Issue
Korean Journal of Chemical Engineering,
Vol.37, No.9, 1541-1551, 2020
Production of a magnetic biosorbent for removing pharmaceutical impurities
A magnetic biosorbent was synthesized from rice straw (a biological waste) and magnetic particles of Fe3O4. The produced biosorbent, which was characterized by XRD, FE SEM, FTIR, and TGA experiments, was used for adsorption of two drug chemical components of Penicillin G and Amlodipine Besylate from aqueous solutions. Effects of various operating parameters such as adsorption temperature (10 to 70 °C), the dose of adsorbent (1 to 5 g/ L), contact time (30 to 360min), and pH of system (pH=4 to 11) on the adsorption efficiency were studied. The produced adsorbent can remove impurities with maximum adsorption efficiency of about 95% for Pen-G and 65% for AMB; therefore, it is a good adsorbent for removing pharmaceutical impurities from wastewater. Moreover, the produced biosorbent can easily separate from the solution by using an external magnetic field. Five isotherm models--linear adsorption model, Langmuir, Freundlich, Sips, and Toth--were used for describing the results; and based on Langmuir isotherm, the maximum adsorption capacity of the produced biosorbent is 164.7mg/g for Pen-G and 229mg/g for AMB. The adsorption kinetics was well fitted with the pseudo-first-order kinetic model, and it is shown that the adsorption is extremely in physical mode.
[References]
  1. Bautista ME, Perez L, Garcia MT, Cuadros S, Marsal A, Chem. Eng. J., 262, 399, 2015
  2. dos Reis GS, Wilhelm M, Silva TCA, Rezwan K, Sampaio CH, Lima EC, Souza SMAGU, Appl. Therm. Eng., 93, 590, 2016
  3. Cusido JA, Cremades LV, Soriano C, Devant M, Appl. Clay Sci., 108, 191, 2015
  4. Li H, Sun Z, Zhang L, Tian Y, Cui G, Yan S, Colloids Surf. A: Physicochem. Eng. Asp., 489, 191, 2016
  5. Morali U, Sensoz S, Fuel, 150, 672, 2015
  6. Vamvuka D, Sfakiotakis S, Saxioni S, Fuel, 147, 170, 2015
  7. Kandanlou R, Bin Ahmad M, Shameli K, Kalantari K, Bio Resource, 9, 642, 2013
  8. Kumar P, Kumar S, Joshi L, Socioeconomic and environmental implications of agricultural residue burning, Springer Briefs in Environmental Science, Germany, 144 (2015).
  9. Minu K, Jiby KK, Kishore VVN, Biomass Bioenerg., 39, 210, 2012
  10. Jani SM, Rushdan I, J. Trop. Agric. and Fd. Sc., 44, 103 (2016).
  11. Kim I, Lee B, Park JY, Choi SA, Han JI, Carbohydr. Polym., 99, 563, 2014
  12. e Silva CFL, Schirmer MA, Maeda RN, Barcelos CA, Pereira N, Electron. J. Biotechnol., 18, 10, 2015
  13. Suhas, Carrott PJM, Carrott MMLR, Bioresour. Technol., 98(12), 2301, 2007
  14. Ghaffar SH, Fan M, Int. J. Adhes., 48, 92, 2014
  15. Abraham A, Mathew AK, Sindhu R, Pandey A, Binod P, Bioresour. Technol., 215, 29, 2016
  16. Baseri H, Tizro S, Process Saf. Environ. Protect., 109, 465, 2017
  17. Guan W, Gao X, Ji G, Xing Y, Du C, Liu Z, J. Solid State Chem., 255, 150, 2017
  18. Ghorbani F, Kamari S, Environ. Technol. Innovation, 14, 100333, 2019
  19. Kamgar A, Hassanajili S, Karimipourfard G, J. Environ. Chem. Eng., 6, 3034, 2018
  20. Yuan Q, Chi NY, Geng W, Yan W, Zhao Y, Li X, Dong B, J. Hazard. Mater., 255, 157, 2013
  21. Jonoush ZA, Farzadkia M, Shahamat YD, dizaji AE, J. Mazandaran Univ. Med. Sci., 25(122), 158 (2015).
  22. Ding H, Zhao Y, Duan Q, Wang J, Zhang K, Ding G, Xie X, Ding C, J. Rare Earths, 35(10), 984, 2017
  23. MirzaHedayata B, Noorisepehr M, Dehghanifard E, Esrafili A, Norozi R, J. Mol. Liq., 264(15), 571, 2018
  24. Pouretedal HR, Sadegh N, J. Water Process Eng., 1, 64, 2014
  25. Samarghandi MR, Al-Musawi TJ, Mohseni-Bandpi A, Zarrabi M, J. Mol. Liq., 211, 431, 2015
  26. Wang L, Shen C, Cao Y, J. Phys. Chem. Solids, 116, 72, 2018
  27. Caia W, Guo M, Weng X, Zhang W, Chen Z, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 98, 65, 2019
  28. Fahimirad B, Rajabi M, Elhampour A, Anal. Chim. Acta, 275, 1047, 2019
  29. Alizadeh E, Baseri H, Solid State Sci., 78, 86, 2018
  30. Li QY, Ma KR, Ma ZJ, Wei Q, Liu JG, Cui SP, Nie ZR, Microporous Mesoporous Mater., 265, 18, 2018
  31. Cullity BD, Stock SR. Elements of X-ray diffraction, 3rd Ed. Prentice Hall, New York (2001).
  32. Wang R, Wang X, Xi X, Hu R, Jiang G, Adv. Mater. Sci. Eng., 2012, 1, 2012
  33. Babu CM, Palanisamy B, Sundaravel B, Palanichamy M, Murugesan V, J. Nanosci. Nanotechnol., 13(4), 2517, 2013
  34. Hu MQ, Yan XL, Hu XY, Zhang JJ, Feng R, Zhou M, J. Colloid Interface Sci., 510, 111, 2018
  35. Ahmaruzzaman M, Gayatri SL, Chem. Eng. Data J., 55, 4614, 2010
  36. Ofomaja AE, Ho YS, Dyes Pigment., 74, 60, 2007
  37. Nourmoradi H, Daneshfar A, Mazloomi S, Bagheri J, Barati S, Methods X, 6, 1967, 2019
  38. Ghamkhari A, Mohamadi L, Kazemzadeh S, Zafar MN, Rahdar A, Khaksefidi R, Composites Part B, 182, 5, 2020
  39. Ahmaruzzaman M, Gupta VK, Ind. Eng. Chem. Res., 50(24), 13589, 2011
  40. Zhao Z, Nie T, Zhou W, Environ. Pollut., 254, 113015, 2019
  41. Brito SMD, Andrade HMC, Soares LF, de Azevedo RP, J. Hazard. Mater., 174(1-3), 84, 2010
  42. Ayawei N, Ebelegi AN, Wankasi D, J. Chem., 2017, 11, 2017
  43. Aksu Z, Tunc O, Process Biochem., 40(2), 831, 2005
  44. Srenscek-Nazzal J, Narkiewicz U, Morawski AW, Wrobel RJ, Michalkiewicz B, J. Chem. Eng. Data, 60(11), 3148, 2015
  45. Srenscek-Nazzal J, Narkiewicz U, Morawski AW, Wrobel RJ, Michalkiewicz B, J. Chem. Eng. Data, 60(11), 3148, 2015
  46. Jung KW, Lee SY, Lee YJ, Bioresour. Technol., 261, 1, 2018
  47. Zaidi NAHM, Lim LBL, Usman A, Environ. Technol. Innovation, 13, 211, 2019
  48. Nejadshafiee V, RezaIslami M, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 101, 42, 2019
  49. Qin L, Feng L, Li C, Fan Z, Zhang G, Shen C, Meng Q, J. Clean Prod., 228, 112, 2019
  50. Mohammadi AS, Sardar M, J. Health Environ., 5(4), 497, 2013