Issue
Korean Journal of Chemical Engineering,
Vol.37, No.7, 1258-1265, 2020
Solid-state conversion of metal oleate precursors for the preparation of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium-ion batteries
A solid-state conversion process for the preparation of LiNi1/3Co1/3Mn1/3O2 (NCM333) using metal oleate precursors was studied. The low melting points of metal oleate complexes result in a highly homogeneous mixture of Li-, Ni-, Co-, and Mn-oleates before calcination at a high temperature in a solid-state conversion process. The discharge capacity and capacity retention were assessed using a control sample prepared with metal acetate precursors. Cyclic voltammetry and electrochemical impedance spectroscopy showed larger cathodic and anodic peak currents and a lower charge transfer resistance for the coin cell with the cathode prepared from metal oleates than for the cell with the cathode prepared from metal acetates. The superior electrochemical properties of the NCM333 cathode prepared by the solid-state conversion process suggested in this study are attributed to the formation of a perfect R3m layered structure with a low degree of cation mixing.
[References]
  1. Armand M, Tarascon JM, Nature, 451, 652, 2008
  2. Tarascon JM, Armand M, Nature, 414, 359, 2001
  3. Peters JF, Baumann M, Zimmermann B, Braun J, Weil M, Renew. Sust. Energ. Rev., 67, 491, 2017
  4. Su L, Jing Y, Zhou Z, Nanoscale, 3, 3967, 2011
  5. Cheng FY, Liang J, Tao ZL, Chen J, Adv. Mater., 23(15), 1695, 2011
  6. Lim WG, Jo CS, Lee JW, Hwang DS, Korean J. Chem. Eng., 35(2), 579, 2018
  7. Lim JE, Kim JK, Korean J. Chem. Eng., 35(12), 2464, 2018
  8. Cui X, Wang S, Mao L, Wang P, Li Z, Wang S, Li S, Electrochim. Acta, 337, 135709, 2020
  9. Ko HS, Park HW, Kim GJ, Lee JD, Korean J. Chem. Eng., 36(4), 620, 2019
  10. Schipper F, Erickson EM, Erk C, Shin JY, Chesneau FF, Aurbach D, J. Electrochem. Soc., 164(1), A6220, 2017
  11. Vu DL, Lee JW, Korean J. Chem. Eng., 33(2), 514, 2016
  12. Wang Y, Chen Y, Cheng S, He L, Korean J. Chem. Eng., 28(3), 964, 2011
  13. Doh CH, Jin BS, Lim JH, Moon SI, Korean J. Chem. Eng., 19(5), 749, 2002
  14. Li S, Zhu K, Liu J, Zhao D, Cui X, J. Electrochem. Energy, 16, 011006, 2019
  15. Wang J, Yao X, Zhou X, Liu Z, J. Mater. Chem., 21, 2544, 2011
  16. Shin YJ, Choi WJ, Hong YS, Yoon S, Ryu KS, Chang SH, Solid State Ion., 177(5-6), 515, 2006
  17. Santhanam R, Rambabu B, J. Power Sources, 195(13), 4313, 2010
  18. Kim MG, Shin HJ, Kim JH, Park SH, Sun YK, J. Electrochem. Soc., 152(7), A1320, 2005
  19. Idemoto Y, Matsui T, Solid State Ion., 179(17-18), 625, 2008
  20. Wu F, Wang M, Su YF, Bao LY, Chen S, J. Power Sources, 195(9), 2900, 2010
  21. Lee KS, Myung ST, Sun YK, J. Power Sources, 195(18), 6043, 2010
  22. Li J, Cao C, Xu X, Zhu Y, Yao R, J. Mater. Chem. A, 1, 11848, 2013
  23. Fujii Y, Miura H, Suzuki N, Shoji T, Nakayama N, J. Power Sources, 171(2), 894, 2007
  24. Chang ZR, Chen ZJ, Wu F, Yuan XZ, Wang HJ, Electrochim. Acta, 54(26), 6529, 2009
  25. Yu C, Li GS, Guan XF, Zheng J, Li LP, Chen TW, Electrochim. Acta, 81, 283, 2012
  26. Kiziltas-Yavuz N, Herklotz M, Hashem AM, Abuzeid HM, Schwarz B, Ehrenberg H, Mauger A, Julien CM, Electrochim. Acta, 113, 313, 2013
  27. Huang ZD, Liu XM, Oh SW, Zhang B, Ma PC, Kim JK, J. Mater. Chem., 21, 10777, 2011
  28. Li C, Hou Q, Li S, Tang F, Wang P, J. Alloy. Compd., 723, 887, 2017
  29. Ryu WH, Lim SJ, Kim WK, Kwon H, J. Power Sources, 257, 186, 2014
  30. Wu F, Wang M, Su YF, Bao LY, Chen S, J. Power Sources, 195(8), 2362, 2010
  31. Xie J, Huang X, Zhu Z, Dai J, Ceram. Int., 36, 2485, 2010
  32. Sinha NN, Munichandraiah N, J. Electrochem. Soc., 157(6), A647, 2010
  33. Shaju KM, Bruce PG, Adv. Mater., 18(17), 2330, 2006
  34. Ding CX, Meng QS, Wang L, Chen CH, Mater. Res. Bull., 44(3), 492, 2009
  35. Ding Y, Zhang P, Long Z, Jiang Y, Gao D, J. Alloy. Compd., 462, 340, 2008
  36. Lu CH, Lin YK, J. Power Sources, 189(1), 40, 2009
  37. Lee JW, Lee JH, Viet TT, Lee JY, Kim JS, Lee CH, Electrochim. Acta, 55(8), 3015, 2010
  38. Jiang X, Sha Y, Cai R, Shao Z, J. Mater. Chem. A, 3, 10536, 2015
  39. He P, Wang HR, Qi L, Osaka T, J. Power Sources, 160(1), 627, 2006
  40. Li DC, Muta T, Zhang LQ, Yoshio M, Noguchi H, J. Power Sources, 132(1-2), 150, 2004
  41. Wang LQ, Hao LF, Yuan HT, Guo J, Zhao M, Li HX, Wang YM, J. Power Sources, 162(2), 1367, 2006
  42. Ohzuku T, Makimura Y, Chem. Lett., 30(7), 642, 2001
  43. Huang YY, Chen JT, Ni JF, Zhou HH, Zhang XX, J. Power Sources, 188(2), 538, 2009
  44. Yabuuchi N, Ohzuku T, J. Power Sources, 119-121, 171, 2003
  45. Belharouak I, Sun YK, Liu J, Amine K, J. Power Sources, 123(2), 247, 2003
  46. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T, Nat. Mater., 3(12), 891, 2004
  47. Rodriguez-Carvajal J, Physica B, 192, 55, 1993
  48. Roisnel T, Rodriguez-Carvajal J, Mater. Sci. Forum, 378-381, 118, 2001
  49. Breger J, Dupre N, Chupas PJ, Lee PL, Proffen T, Parise JB, Grey CP, J. Am. Chem. Soc., 127(20), 7529, 2005
  50. Ohzuku T, Nakura K, Aoki T, Electrochim. Acta, 45(1-2), 151, 1999
  51. Zhang B, Chen G, Xu P, Li CC, J. Power Sources, 176(1), 325, 2008
  52. Deng C, Zhang S, Wu B, Yang SY, Li HQ, J. Solid State Electrochem., 14, 871, 2010
  53. Zhang XY, Jiang WJ, Mauger A, Qilu, Gendron F, Julien CM, J. Power Sources, 195(5), 1292, 2010
  54. Zhao E, Chen M, Chen D, Xiao X, Hu Z, ACS Appl. Mater. Interfaces, 7, 27096, 2015
  55. Yang C, Zhang X, Huang M, Huang J, Fang Z, ACS Appl. Mater. Interfaces, 9, 12408, 2017
  56. Park JH, Cho JH, Kim SB, Kim WS, Lee SY, Lee SY, J. Mater. Chem., 22, 12574, 2012
  57. Zhang LL, Li Z, Yang XL, Ding XK, Zhou YX, Sun HB, Tao HC, Xiong LY, Huang YH, Nano Energy, 34, 111, 2017
  58. Zhang QY, Su YF, Chen L, Lu Y, Bao LY, He T, Wang J, Chen RJ, Tan J, Wu F, J. Power Sources, 396, 734, 2018