Issue
Korean Journal of Chemical Engineering,
Vol.37, No.7, 1251-1257, 2020
Synthesis of size-controlled Ag nanowires via a seed-mediated growth method
Seed-mediated growth has attracted much attention due to the wide range of controllability in size and shape, improved reproducibility, and capability to form bimetallic structures. Especially, seed-mediated growth of Ag has been extensively studied due to the excellent electrical, thermal, optical, and catalytic properties of Ag, but it has been conducted mainly for isotropic seeds such as nanocubes, and relatively little attention has been given to anisotropic seeds such as nanowires. We studied the seed-mediated growth of Ag nanowires for their size control, exploring the effect of hydrochloric acid (HCl), capping agents, and seeds to find the experimental condition for heterogeneous nucleation. By the optimized condition, the length and diameter were grown up to nearly 7 and 12 times, respectively, by those of seeds. Interestingly, for the condition that causes homogeneous nucleation, Ag particles of various shapes, including nanocubes, nanowires, and micro rods, were synthesized. The size-controlled Ag nanowires and Ag particles of various shapes obtained in this work are expected to be applied for the study of low resistance electrodes and the size- and shape-dependent properties of metal nanomaterials.
[References]
  1. Xia Y, Gilroy KD, Peng HC, Xia X, Angew. Chem.-Int. Edit., 56, 60, 2017
  2. Gilroy KD, Ruditskiy A, Peng HC, Qin D, Xia YN, Chem. Rev., 116(18), 10414, 2016
  3. LaMer VK, Dinegar RH, J. Am. Chem. Soc., 72, 4847, 1950
  4. Lee JH, Lee P, Lee D, Lee SS, Ko SH, Cryst. Growth Des., 12, 5598, 2012
  5. Zhang XY, Xu JJ, Wu JY, Shan F, Ma XD, Chen YZ, Zhang T, RSC Adv., 7, 8, 2017
  6. Pietrobon B, McEachran M, Kitaev V, ACS Nano, 3, 21, 2009
  7. Mayer M, Scarabelli L, March K, Altantzis T, Tebbe M, Kociak M, Bals S, Garcia de Abajo FJ, Fery A, Liz-Marzan LM, Nano Lett., 15, 5427, 2015
  8. Luo M, Huang H, Choi SI, Zhang C, da Silva RR, Peng HC, Li ZY, Liu J, He Z, Xia Y, ACS Nano, 9, 10523, 2015
  9. Zhang XY, Xue XM, Zhou HL, Zhao N, Shan F, Su D, Liu YR, Zhang T, Nanoscale, 10, 15468, 2018
  10. Rycenga M, Cobley CM, Zeng J, Li WY, Moran CH, Zhang Q, Qin D, Xia YN, Chem. Rev., 111(6), 3669, 2011
  11. Niu W, Zhang L, Xu G, Nanoscale, 5, 3172, 2013
  12. Zhang T, Song YJ, Zhang XY, Wu JY, Sensors, 14, 5860, 2014
  13. Xia X, Zeng J, Zhang Q, Moran CH, Xia Y, J. Phys. Chem. C, 116, 21647, 2012
  14. Zeng J, Zheng YQ, Rycenga M, Tao J, Li ZY, Zhang QA, Zhu YM, Xia YN, J. Am. Chem. Soc., 132(25), 8552, 2010
  15. Hoppe CE, Lazzari M, Pardinas-Blanco I, Lopez-Quintela MA, Langmuir, 22(16), 7027, 2006
  16. Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE, Dalton Trans., 44, 17883, 2015
  17. Chen ZF, Chang JW, Balasanthiran C, Milner ST, Rioux RM, J. Am. Chem. Soc., 141(10), 4328, 2019
  18. Im SH, Lee YT, Wiley B, Xia Y, Angew. Chem.-Int. Edit., 44, 2154, 2005
  19. Wiley BJ, Herricks T, Sun Y, Xia Y, Nano Lett., 4, 1733, 2004
  20. Schuette WM, Buhro WE, ACS Nano, 7, 3844, 2013
  21. Chen Z, Balankura T, Fichthorn KA, Rioux RM, ACS Nano, 13, 1849, 2019
  22. Wiley B, Sun YG, Xia YN, Langmuir, 21(18), 8077, 2005
  23. Korte KE, Skrabalak SE, Xia Y, J. Mater. Chem., 18, 437, 2008
  24. Zhang QA, Li WY, Moran C, Zeng J, Chen JY, Wen LP, Xia YN, J. Am. Chem. Soc., 132(32), 11372, 2010
  25. Lin ZW, Tsao YC, Yang MY, Huang MH, Chem. Eur. J., 22, 2326, 2016
  26. Jeon SJ, Yazdi S, Thevamaran R, Thomas EL, Cryst. Growth Des., 17, 284, 2017
  27. Lin X, Lin S, Liu YL, Gao MM, Zhao HY, Liu BK, Hasi W, Wang L, Langmuir, 34(21), 6077, 2018
  28. Chen C, Wang L, Yu HJ, Jiang GH, Yang Q, Zhou JF, Xiang WD, Zhang JF, Mater. Chem. Phys., 107(1), 13, 2008
  29. Tsuji M, Tang X, Matsunaga M, Maeda Y, Watanabe M, Cryst. Growth Des., 10, 5238, 2010
  30. Bergin SM, Chen YH, Rathmell AR, Charbonneau P, Li ZY, Wiley BJ, Nanoscale, 4, 1996, 2012
  31. Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Li YD, Wang JX, Yu DP, Phys. Rev. B, 73, 235409, 2006
  32. Greer JR, Nix WD, Phys. Rev. B, 73, 1, 2006
  33. Zhu Z, Qin Q, Xu F, Fan F, Ding Y, Zhang T, Wiley BJ, Wang ZL, Phys. Rev. B, 85, 045443, 2012
  34. Peng C, Zhan Y, Lou J, Small, 8, 1889, 2012
  35. Wang J, Sansoz F, Huang J, Liu Y, Sun S, Zhang Z, Mao SX, Nat. Commun., 4, 1742, 2013
  36. Uchic MD, Dimiduk DM, Florando JN, Nix WD, Science, 305, 986, 2004
  37. Mahmoud MA, O’Neil D, El-Sayed MA, Nano Lett., 14, 743, 2014
  38. Thevamaran R, Lawal O, Yazdi S, Jeon SJ, Lee JH, Thomas EL, Science, 354(6310), 312, 2016
  39. Da Silva RR, Yang M, Choi SI, Chi M, Luo M, Zhang C, Li ZY, Camargo PHC, Ribeiro SJL, Xia Y, ACS Nano, 10, 7892, 2016
  40. Sun Y, Mayers B, Herricks T, Xia Y, Nano Lett., 3, 955, 2003
  41. Sun Y, Gates B, Mayers B, Xia Y, Nano Lett., 2, 165, 2002
  42. Shi HY, Hu B, Yu XC, Zhao RL, Ren XF, Liu SL, Liu JW, Feng M, Xu AW, Yu SH, Adv. Funct. Mater., 20(6), 958, 2010
  43. Araki T, Jiu J, Nogi M, Koga H, Nagao S, Sugahara T, Suganuma K, Nano Res., 7, 236, 2014
  44. Zhang Y, Guo J, Xu D, Sun Y, Yan F, ACS Appl. Mater. Interfaces, 9, 25465, 2017