Issue
Korean Journal of Chemical Engineering,
Vol.37, No.7, 1206-1211, 2020
Ethylenediamine-incorporated MIL-101(Cr)-NH2 metal-organic frameworks for enhanced CO2 adsorption
Ethylenediamine (EA)-incorporated MIL-101(Cr)-NH2 adsorbents were prepared for CO2 adsorption. First, MIL-101(Cr)-NH2 was directly prepared by the solvothermal method, followed by the EA incorporation inside the pores of MIL-101(Cr)-NH2. The prepared samples were characterized by N2 porosimetry, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectrometry, thermogravimetric, and powder X-ray diffraction analyses. The effects of ethylenediamine loading in MIL-101(Cr)-NH2 on the CO2 adsorption capability were systematically investigated. EA-incorporated MIL-101(Cr)-NH2 showed CO2 adsorption capacity of ca. 3.4mmol/g, which was ~62% higher than the pristine MIL-101(Cr)-NH2. In addition, the amine-grafted MOF samples showed good regenerability and stability after consecutive adsorption-desorption cycles at ambient conditions. These suggest that introduction of alkylamine molecules into the pores of metal-organic frameworks can be a promising strategy to improve the CO2 soprtion ability of MOFs.
[References]
  1. Belmabkhout Y, Serna-Guerrero R, Sayari A, Adsorption, 17, 395, 2011
  2. Cabello CP, Berlier G, Magnacca G, Rumori P, Palomino GT, CrystEngComm., 17, 430, 2015
  3. Cao Y, Zhao Y, Lv Z, Song F, Zhong Q, J. Ind. Eng. Chem., 27, 102, 2015
  4. DeCoste JB, Peterson GW, Schindler BJ, Killops KL, Browe MA, Mahle JJ, J. Mater. Chem. A., 1, 11922, 2013
  5. Dietzel JDC, Besikiotis V, Blom R, J. Mater. Chem., 19, 7362, 2009
  6. Vilian ATE, Dinesh B, Muruganantham R, Choe SR, Kang SM, Huh YS, Han YK, Microchim. Acta, 184, 4793, 2017
  7. Goeppert A, Czaun M, May RB, Prakash GKS, Olah GA, Narayanan SR, JACS, 133, 20164, 2011
  8. Hwang YH, Hong DY, Chang JS, Jhung SH, Seo YK, Kim J, Vimont A, Daturi M, Serre C, Ferey G, Angew. Chem.-Int. Edit., 47, 4144, 2008
  9. Janakiraman N, Johnson M, Rom. J. Biophys., 25, 131, 2015
  10. Kim SN, Yang ST, Kim J, Park JE, Ahn WS, CrystEng-Comm., 14, 4142, 2012
  11. Kuwahara Y, Kang DY, Copeland JR, Brunelli NA, Didas SA, Bollini P, Sievers C, Kamegawa T, Yamashita H, Jones CW, JACS, 134, 10757, 2012
  12. Lee WR, Hwang SY, Ryu DW, Lim KS, Han SS, Moon D, Choi J, Hong CS, Energy Environ. Sci., 7, 744, 2014
  13. Li JR, Kuppler RJ, Zhou HC, Chem. Soc. Rev., 38, 1477, 2009
  14. Li N, Xu J, Feng R, Hu TL, Bu XH, Chem. Commun., 52, 8501, 2016
  15. Lin Y, Kong C, Chen L, RSC Adv., 2, 6417, 2012
  16. Lin Y, Lin H, Wang H, Suo Y, Li B, Kong C, Chen L, J. Mater. Chem. A., 2, 14658, 2014
  17. Liu J, Thallapally PK, McGrail BP, Brown DR, Liu J, Chem. Soc. Rev., 41, 2308, 2012
  18. Ma X, Wang X, Song C, JACS, 131, 5777, 2009
  19. McDonald TM, D'Alessandro DM, Krishna R, Long JR, Chem. Sci., 2, 2022, 2011
  20. Mei L, Jiang T, Zhou X, Li YW, Wang HH, Li Z, Chem. Eng. J., 321, 600, 2017
  21. Park HJ, Suh MP, Chem. Sci., 4, 685, 2013
  22. Saikia M, Saikia L, RSC Adv., 6, 14937, 2016
  23. Schneemann A, Henke S, Schwedler I, Fischer RA, ChemPhysChem., 15, 823, 2014
  24. Vo TK, Bae YS, Chang BJ, Moon SY, Kim JH, Kim J, Microporous Mesoporous Mater., 274, 17, 2019
  25. Wen M, Mori K, Kamegawa T, Yamashita H, Chem. Commun., 50, 11645, 2014
  26. Yan Q, Lin Y, Kong C, Chen L, Chem. Commun., 49, 6873, 2013
  27. Zhong R, Yu X, Meng W, Liu J, Zhi C, Zou R, ACS Sustain. Chem. Eng., 6, 16493, 2018
  28. Zhou ZY, Mei L, Ma C, Xu F, Xiao J, Xia QB, Li Z, Chem. Eng. Sci., 147, 109, 2016