Issue
Korean Journal of Chemical Engineering,
Vol.37, No.7, 1166-1173, 2020
Rapid removal of low concentrations of mercury from wastewater using coal gasification slag
Coal gasification slag (CGS) is a carbon-containing solid waste used as an adsorbent to remove low concentrations of mercury from wastewater in a series of batch tests to assess its adsorption properties and safe storage. The results showed that the adsorption of mercury on CGS was a very rapid and efficient process, and adsorption equilibrium was reached in only 10-40 min. A pseudo-second-order kinetics model provided a better fit to the equilibrium data. The adsorption capacity on CGS was just slightly below the value of active carbon. CGS showed the highest mercury removal efficiency at a solution pH of 4. Although the presence of other metal cations and anions affected the adsorption, CGS showed good selectivity for mercury ions. The adsorption of mercury was not affected by low concentrations of Cr3+ or Cu2+. The negative interference of anions on the removal efficiency followed the order: Cl?>H2PO4 > CO3 2. The adsorption mechanism related to the functional groups included ion exchange, precipitation, coordination complexation, and surface complexation. Mercury adsorbed on CGS leached very slowly in weakly acidic or basic solution. All results of the study indicate that CGS is an economical and safe adsorbent for potential industrial applications.
[References]
  1. Huang N, Zhai LP, Xu H, Jiang DL, J. Am. Chem. Soc., 139(6), 2428, 2017
  2. Davodi B, Ghorbani M, Jahangiri M, J. Taiwan Inst. Chem. Eng., 80, 363, 2017
  3. Liu L, Ding L, Wu X, Deng F, Ind. Eng. Chem. Res., 55, 51, 2016
  4. Wang P, Wang R, Wang C, Qian J, J. Comput. Theor. Nanosci., 13, 5714, 2016
  5. Hadi P, To MH, Hui CW, Lin CSK, McKay G, Water Res., 73, 37, 2015
  6. Cox M, El-Shafey E, Pichugin AA, Appleton Q, J. Chem. Technol. Biotechnol., 75(6), 427, 2000
  7. Wang Z, Xu J, Hu Y, Zhao H, Zhou J, Liu Y, Lou Z, Xiu XH, J. Taiwan Inst. Chem. Eng., 60, 394, 2015
  8. Ackerman JT, Kraus TE, Fleck JA, David PK, William RH, Sandra MB, Herzog MP, Hartman CA, Bachand PAM, Environ. Sci. Technol., 49, 6304, 2015
  9. Yan X, Meng J, Hu X, Feng R, Zhou M, J. Sol-Gel Sci. Technol., 89, 617, 2019
  10. Zhang D, Yin Y, Liu J, Chem. Speciat. Bioavailab., 29, 161, 2017
  11. Li B, Zhang Y, Ma D, Shi Z, Ma S, Nat. Commun., 5, 5537, 2014
  12. Lone S, Yoon DH, Lee H, Cheong IW, Environ. Sci.: Water Res. Technol., 5, 83 (2019).
  13. Attari M, Bukhari SS, Kazemian H, Rohani S, J. Environ. Chem. Eng., 5, 391, 2016
  14. Ecer U, Yilmaz S, Sahan T, Water Sci. Technol., 78, 1348, 2018
  15. Yilmaz S, Zengin A, Akbulut Y, Sahan T, Environ. Sci. Pollut. Res., 26, 20454, 2019
  16. Yilmaz S, Zengin A, Ecer U, Sahan T, Colloids Surf. A: Physicochem. Eng. Asp., 583, 123961, 2019
  17. Uzun Y, Sahan T, Arch. Environ. Prot., 43, 37, 2017
  18. Wang S, Chem. Ind. Eng. Prog., 35, 653, 2016
  19. Xu SQ, Zhou ZJ, Gao XX, Yu GS, Gong X, Fuel Process. Technol., 90(9), 1062, 2009
  20. Wu SY, Huang S, Ji LY, Wu YQ, Gao JS, Fuel, 122, 67, 2014
  21. Gu Y, Qiao X, Microporous Mesoporous Mater., 276, 303, 2019
  22. Liu S, Chen X, Ai W, Wei C, J. Clean Prod., 212, 1062, 2019
  23. Sun Y, Lv D, Zhou J, Chemosphere, 185, 452, 2017
  24. Park JH, Wang J, Zhou B, Mikhael JER, DeLaune RD, Environ. Pollut., 244, 627, 2019
  25. Yılmaz S, Sahan T, Karabakan A, Korean J. Chem. Eng., 34(8), 2225, 2017
  26. Sun DH, Zhang XD, Wu YD, Liu X, J. Hazard. Mater., 181(1-3), 335, 2010
  27. Wang Y, Sun D, Korean J. Chem. Eng., 32(7), 1323, 2015
  28. Chang MY, Juang RS, Colloids Surf. A: Physicochem. Eng. Asp., 269, 35, 2005
  29. Faulconer EK, Mazyck DW, J. Environ. Chem. Eng., 5, 2879, 2017
  30. Zhang D, Huo P, Liu W, Chinese J. Chem. Eng., 24, 446, 2016
  31. Li ZC, Wu LY, Liu HJ, Lan HC, Qu JH, Chem. Eng. J., 228, 925, 2013
  32. Ma LJ, Islam SM, Xiao CL, Zhao J, Liu HY, Yuan MW, Sun GB, Li HF, Ma SL, Kanatzidis MG, J. Am. Chem. Soc., 139(36), 12745, 2017
  33. Azizi A, Moniri E, Hassani AH, Panahi HA, Miralinaghi M, Microchem. J., 145, 559, 2019
  34. Li Y, Xiao HN, Pan YF, Zhang M, Jin YC, J. Hazard. Mater., 377, 88, 2019
  35. Liu C, Peng J, Zhang L, Wang S, Ju S, Liu C, J. Clean Prod., 196, 109, 2018
  36. Teimouri A, Esmaeili H, Foroutan R, Ramavandi B, Korean J. Chem. Eng., 35(2), 479, 2018
  37. Tan GC, Sun WL, Xu YR, Wang HY, Xu N, Bioresour. Technol., 211, 727, 2016
  38. Khoramzadeh AE, Nasemejad B, Halladj R, J. Taiwan Inst. Chem. E., 44, 266, 2013
  39. Gupta NK, Gupta A, FlatChem., 11, 1, 2018
  40. Aghdam K, Panahi HA, Alaei E, Hasani AH, Moniri E, Environ. Monit. Assess., 188, 223, 2016
  41. Muliwa AM, Onyango MS, Maity A, Ochieng A, Water Sci. Technol., 75, 2841, 2017
  42. AlOmar MK, Alsaadi MA, Jassam TM, Akib S, Hashim MA, J. Colloid Interface Sci., 497, 413, 2017
  43. GB8978-1996, Integrated wastewater discharge standard, Publications, Beijing (1996).
  44. Liu P, Ptacek CJ, Blowes DW, Landis RC, J. Hazard. Mater., 308, 233, 2016
  45. Hadi P, To MH, Hui CW, Li CSK, Mckay G, Water Res., 73, 37, 2015
  46. Hutson ND, Attwood BC, Scheckel KG, Environ. Sci. Technol., 41, 1747, 2007
  47. Kuma ASK, Jiang SJ, Tseng WL, J. Environ. Chem. Eng., 4, 2052, 2016
  48. Magni E, Somorjai GA, Appl. Surf. Sci., 89, 187, 1995
  49. Kumar ASK, Jiang SJ, RSC Adv., 5, 6294, 2015
  50. GuanY, Hu T, Zhao L, Wu J, Tian F, Pan W, He P, Qi X, Li F, Xu K, Korean J. Chem. Eng., 36(1), 115, 2019