Issue
Korean Journal of Chemical Engineering,
Vol.37, No.7, 1149-1156, 2020
Levulinic acid production through two-step acidic and thermal treatment of food waste using dilute hydrochloric acid
This research investigated the concept of a two-step acidic and thermal treatment for glucose extraction and levulinic acid (LA) production from food waste using dilute hydrochloric acid (DHA) as a catalyst, and subsequently analyzed the properties of the resulting humins. Glucose extraction was performed under various reaction conditions (reaction temperature range: 120-190 °C, DHA concentration range: 0.2-0.5% v/v); the glucose extraction yield of the acidic treatment step reached 83.17% under the optimal conditions (150 °C in 0.5% DHA). LA production was achieved during the thermal treatment step, which was investigated using two independent experiments to determine the influence of the reaction conditions (reaction time: 5-140min, concentration factor: 1.5-3.0, reaction temperature: 160-190 °C). The LA production process was affected by the concentration factor and the reaction temperature due to the low pH of solution and the rapid reaction rate, respectively. The thermal stability of the humins was highest at a concentration factor of 3.0 because of the 13.07 C/H ratio of the humins.
[References]
  1. Baugh KD, McCarty PL, Biotechnol. Bioeng., 31, 50, 1988
  2. Brautigam KR, Jorissen J, Priefer C, Waste Manage. Res., 32, 683, 2014
  3. Caretto A, Perosa A, ACS Sustainable Chem. Eng., 1, 989, 2013
  4. Cherubini F, Energy Conv. Manag., 51(7), 1412, 2010
  5. Das SP, Ravindran R, Ahmed S, Das D, Goyal D, Fontes CMGA, Goyal A, Appl. Biochem. Biotechnol., 167(6), 1475, 2012
  6. Esteban J, Ladero M, Int. J. Food Sci. Technol., 53, 1095, 2018
  7. Fitzpatrick SW, ACS Symp. Ser., 921, 271, 2006
  8. Chen SS, Maneerung T, Tsang DCW, Ok YS, Wang CH, Chem. Eng. J., 328, 246, 2017
  9. Girisuta B, Janssen LPBM, Heeres HJ, Chem. Eng. Res. Des., 84(A5), 339, 2006
  10. Goto M, Obuchi R, Hiroshi T, Sakaki T, Shibata M, Bioresour. Technol., 93(3), 279, 2004
  11. Hayes DJ, Fitzpatrick S, Hayes MH, Ross JR, Biorefineries:Ind. Processes Prod., 1, 139, 2006
  12. Heltzel J, Patil SK, Lund CR, Reaction pathways and mechanisms in thermocatalytic biomass conversion II, Springer, Singapore, 105 (2016).
  13. Horvat J, Klaic B, Metelko B, Sunjic V, Croat. Chemica. Acta, 59, 429, 1986
  14. Horvath IT, Mehdi H, Fabos V, Boda L, Mika LT, Green Chem., 10, 238, 2008
  15. Jeong H, Jang SK, Hong CY, Kim SH, Lee SY, Lee SM, Choi JW, Choi IG, Bioresour. Technol., 225, 183, 2017
  16. Ji H, Dong C, Yang G, Pang Z, BioResources, 14, 725, 2019
  17. Kim SJ, Kwon HS, Kim GH, Um BH, Ind. Crop. Prod., 67, 395, 2015
  18. Kim YS, Jang JY, Park SJ, Um BH, Waste Manage., 74, 231, 2018
  19. Li X, Xu R, Yang J, Nie S, Liu D, Liu Y, Si C, Ind. Crop. Prod., 130, 184, 2019
  20. Park MR, Kim HS, Kim SK, Jeong GT, Fuel Process. Technol., 172, 115, 2018
  21. Patil SKR, Lund CRF, Energy Fuels, 25(10), 4745, 2011
  22. Patil SKR, Heltzel J, Lund CRF, Energy Fuels, 26(8), 5281, 2012
  23. Pileidis FD, Titirici MM, ChemSusChem, 9, 562, 2016
  24. Rackemann DW, Doherty WO, Biofuels, Bioprod. Biorefin., 5, 198, 2011
  25. Rackemann DW, Bartley JP, Doherty WO, Ind. Crop. Prod., 52, 46, 2014
  26. Gong C, Wei J, Tang X, Zeng X, Sun Y, Lin L, Korean J. Chem. Eng., 36(5), 740, 2019
  27. Rasmussen H, Sørensen HR, Meyer AS, Carbohydr. Res., 385, 36, 2014
  28. Ravindran R, Jaiswal AK, Trends Biotechnol., 34, 58, 2016
  29. Kim TH, Jeon YJ, Oh KK, Kim TH, Korean J. Chem. Eng., 30(6), 1339, 2013
  30. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, National Renewable Energy Lab, Golden, CO, USA (2006).
  31. Sluiter A, Ruiz R, Scarlata C, Sluiter J, Templeton D, National Renewable Energy Lab, Golden, CO, USA (2008).
  32. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, National Renewable Energy Lab, Golden, CO, USA (2008).
  33. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D, National Renewable Energy Lab, Golden, CO, USA (2010).
  34. Sumerskii IV, Krutov SM, Zarubin MY, Russ. J. Appl. Chem., 83, 320, 2010
  35. Trivedi J, Bhonsle AK, Atray N, Academic Press., 19, 427, 2020
  36. Tulaphol S, Hossain MA, Rahaman MS, Liu LY, Phung TK, Renneckar S, Sathitsuksanoh N, Energy Fuels, 34, 1764, 2019
  37. Tsilomelekis G, Orella MJ, Lin Z, Cheng Z, Zheng W, Nikolakis V, Vlachos DG, Green Chem., 18, 1983, 2016
  38. Um BH, Karim MN, Henk LL, Appl. Biochem. Biotechnol., 105, 115, 2003
  39. Um BH, van Walsum GP, Appl. Biochem. Biotechnol., 168(2), 406, 2012
  40. van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499, 2013
  41. Weingarten R, Cho J, Conner WC, Huber GW, Green Chem., 12, 1423, 2012
  42. Weingarten R, Cho J, Xing R, Conner WC, Huber GW, ChemSusChem., 5, 1280, 2012
  43. Weingarten R, Conner WC, Huber GW, Energy Environ. Sci., 5, 7559, 2012
  44. Werpy T, Petersen G, National Renewable Energy Lab, Golden, CO, USA (2004).
  45. Xing R, Qi W, Huber GW, Energy Environ. Sci., 4, 2193, 2011
  46. Yan K, Jarvis C, Gu J, Yan Y, Renew. Sust. Energ. Rev., 51, 986, 2015
  47. Yang Z, Kang H, Guo Y, Zhuang G, Bai Z, Zhang H, Dong Y, Ind. Crop. Prod., 46, 205, 2013