Issue
Korean Journal of Chemical Engineering,
Vol.37, No.6, 1086-1096, 2020
Formation of calcium carbonates from Ca(OH)2-H2O-supercritical CO2 using a rapid spraying method
Particle formation techniques using supercritical fluid are simple processes that can control particle size and morphology, although high-pressure is required. The purpose of this study was to investigate how the experimental conditions affect the extent and rate of CaCO3 conversion and the size and morphology of the precipitated CaCO3 from the carbonation tests with rapid spraying of reactants causing rapid depressurization of supercritical fluid. The relatively low temperature and pressure conditions (35 °C and 7.5MPa) resulted in low CaCO3 conversion efficiency (41.4-51.9%), high vaterite content (70-78%) of CaCO3, and smaller-sized particles. The relatively high temperature and pressure conditions (80 oC and 12.0MPa) resulted in high CaCO3 conversion efficiency (66.8-73.2%), high calcite content (50-80%) of CaCO3, and larger-sized particles. The particle size of solid products ranged between 20 and 180nm with approximately a peak of 100 nm in the particle size distribution (PSD) curve, irrespective of the test conditions; however, shorter reaction times led to smaller particles. The optimal conditions under which the extent of CaCO3 conversion and calcite content were maximum were 50 °C, 9.0MPa, and 1 h of reaction time (CaCO3 conversion: 92.9%; calcite content of CaCO3: 87%).
[References]
  1. Sohnel O, Mullin JW, J. Cryst. Growth, 60, 239, 1982
  2. Leeuw NH, Parker SC, J. Phys. Chem., 102, 2914, 1998
  3. Lippmann F, Sedimentary carbonate minerals, Springer Science & Business Media, Berlin (1973).
  4. Dickinson SR, Henderson GE, McGrath KM, J. Cryst. Growth, 244(3-4), 369, 2002
  5. Hwang DJ, Ryu JY, Yu YH, Cho KH, Ahn JW, Han C, Lee JD, J. Ind. Eng. Chem., 20(5), 2727, 2014
  6. Domingo C, Loste E, Gomez-Morales J, Garcia-Carmona J, Fraile J, J. Supercrit. Fluids, 36(3), 202, 2006
  7. Lopez-Periago AM, Pacciani R, Garcia-Gonzalez C, Vega LF, Domingo C, J. Supercrit. Fluids, 52(3), 298, 2010
  8. Gu W, Bousfield DW, Tripp CP, J. Mater. Chem., 16, 3312, 2006
  9. Montes-Hernandez G, Renard F, Geoffroy N, Charlet L, Pironon J, J. Cryst. Growth, 308(1), 228, 2007
  10. Li J, Azevedo EG, Recent. Pat. Chem. Eng., 1, 157, 2008
  11. Lozowski D, Chem. Eng., 117, 15, 2010
  12. Regnault O, Lagneau V, Schneider H, Chem. Geol., 265, 113, 2009
  13. Lopez-Periago AM, Pacciani R, Garcia-Gonzalez C, Vega LF, Domingo C, Cryst. Growth Des, 52, 298, 2011
  14. Hawae P, Chusri N, Sumanatrakul P, Siripatana C, PACCON2015 (2015).
  15. Mchugh M, Krukonis V, Supercritical fluid extraction: principles and practice, Butterworth, Stoneham (1986).
  16. Debenedetti PG, AIChE J., 36, 1289, 1990
  17. Pane I, Hansen W, Cem. Concr. Res., 35, 1155, 2005
  18. Kontoyannis CG, Vagenas NV, Analyst, 125, 251, 2000
  19. Wu ZG, Wang J, Guo Y, Jia YR, Cryst. Res. Technol., 53, 170012, 2018
  20. Chen J, Xiang L, Powder Technol., 189(1), 64, 2009
  21. Niedermayr A, Kohler SJ, Dietzel M, Chem. Geol., 340, 105, 2013
  22. Chu DH, Vinoba M, Bhagiyalakshmi M, Baek IH, Nam SC, Yoon Y, Kim SH, Jeong SK, RSC Adv., 3, 21722, 2013
  23. Zhao T, Guo B, Zhang F, Sha F, Li Q, Zhang J, ACS Appl. Mater. Interfaces, 7, 15918, 2015
  24. Konopacka-Lyskawa D, Koscielska B, Karczewski J, Mater. Chem. Phys., 192, 13, 2017
  25. Jiang JX, Wu Y, Chen CJ, Wang XL, Zhao HK, Xu SS, Yang CC, Xiao BW, Adv. Powder Technol., 29(10), 2416, 2018
  26. Ding Y, Liu YY, Ren YY, Yan HX, Wang M, Wang D, Lu XY, Wang B, Fan TB, Guo HF, Powder Technol., 333, 410, 2018
  27. Wu ZG, Wang J, Guo Y, Jia YR, Cryst. Res. Technol., 53, 170012, 2018
  28. Zhang J, Zhao C, Zhou A, Yang C, Zhao L, Li Z, Constr. Build. Mater., 224, 815, 2019
  29. Pabst W, Gregorova E, ICP Prague 2007 (2007).
  30. Merkus HG, Particle size measurements: fundamentals, practice, quality, Springer, Berlin (2012).
  31. Goto S, Suenaga K, Kado T, Fukuhara M, J. Am. Ceram. Soc., 78, 2867, 1995
  32. Vance K, Falzone G, Pignatelli I, Bauchy M, Balonis M, Sant G, Ind. Eng. Chem. Res., 54(36), 8908, 2015
  33. Padanyi ZV, Solid State Commun., 8, 541, 1970
  34. Harris J, Mey I, Hajir M, Mondeshki M, Wolf SE, Cryst. Eng. Comm., 17, 36, 2015
  35. Spanos N, Koutsoukos PG, J. Cryst. Growth, 191, 783, 1998
  36. Han YS, Hadiko G, Fuji M, Takahashi M, J. Cryst. Growth, 276(3-4), 541, 2005