Issue
Korean Journal of Chemical Engineering,
Vol.37, No.6, 1071-1085, 2020
Photocatalytic degradation of methylene blue using three-dimensional porous graphene-titania microparticles under UV light
Porous graphene and graphene-silica microparticles containing titania nanoparticles were synthesized by emulsion-assisted self-assembly for the photocatalytic decomposition of methylene blue in an aqueous medium. After the mixed dispersion of graphene nanosheets and titania nanoparticles with or without silicic acid was prepared, the complex fluid was emulsified in a continuous oil phase to form tiny droplets that act as micro-reactors for the synthesis of porous photocatalytic particles, the morphology of which was three-dimensional spherical shapes with a number of irregular-shaped macropores. The three dimensional conductive graphene scaffolds greatly enhanced the photocatalytic activity of the porous particles due to the suppression of the recombination of electron-hole pairs generated from titania under UV light irradiation, and adsorption of dye molecules on graphene-silica scaffolds caused rapid removal of aqueous contaminants. Unlike previous reports, the kinetics of the photocatalytic decomposition reaction could not be explained by Langmuir-Hinshelwood kinetics, but the experimental data could be fitted well by the second- or third-order kinetics. This indicates that the removal rate of the pollutant could be enhanced by the supporting material. The removal efficiency of methylene blue was estimated as more than 95% when sufficient amount of the photocatalytic particles was used, implying that application to water treatment process will be possible.
[References]
  1. Ould-Chikh S, Pavan S, Fecant A, Trela E, Verdon C, Gallard A, Crozet N, Loubet JL, Hemati M, Rouleau L, Stud. Surf. Sci. Catal., 175, 193, 2010
  2. Ciampi S, Bocking T, Kilian KA, Harper JB, Gooding JJ, Langmuir, 24(11), 5888, 2008
  3. Wang CF, Chen LT, Langmuir, 33(8), 1969, 2017
  4. Ernawati L, Ogi T, Balgis R, Okuyama K, Stucki M, Hess SC, Stark WJ, Langmuir, 32(1), 338, 2016
  5. Cho YS, Oh IA, Jung NR, J. Ceram. Processing Res., 17(6), 573, 2016
  6. Wu CM, Chou MH, Eur. Polym. J., 82, 35, 2016
  7. Passoni L, Criante L, Fumagalli F, Scotognella F, Lanzani G, Fonzo FD, ACS Nano, 8(12), 12167, 2014
  8. Dorin RM, Sai H, Wiesner U, Chem. Mater., 26(1), 339, 2014
  9. Bollhorst T, Grieb T, Rosenauer A, Fuller G, Maas M, Rezwan K, Chem. Mater., 25(17), 3464, 2013
  10. Fujishima A, Honda K, Nature, 238(5358), 37, 1972
  11. Cho YS, Oh IA, Jung NR, J. Dispersion Sci. Technol., 37, 676, 2016
  12. Bhachu DS, Sathasivam S, Carmalt CJ, Parkin IP, Langmuir, 30(2), 624, 2014
  13. Bhachu DS, Sathasivam S, Carmalt CJ, Parkin IP, Langmuir, 30(2), 624, 2014
  14. Yoo H, Kahng S, Kim JH, Sol. Energy Mater. Sol. C., 204, 110211, 2020
  15. Bak D, Kim JH, J. Power Sources, 389, 70, 2018
  16. Su T, Shao Q, Qin Z, Guo Z, Wu Z
  17. Xu Q, Zhang L, Yu J, Wageh S, Al-Ghamdi AA, Jaroniec M, Mater. Today, 21(10), 1042, 2018
  18. Low J, Dai B, Tong T, Jiang C, Yu J, Adv. Mater., 31(6), 180298, 2018
  19. Lin B, Li H, An H, Hao WB, Wei JJ, Dai YZ, Ma CS, Yang GD, Appl. Catal. B: Environ., 220, 542, 2018
  20. Cai XY, Zhang JY, Fujitsuka M, Majima T, Appl. Catal. B: Environ., 202, 191, 2017
  21. Horiguchi Y, Kanda T, Torigoe K, Sakai H, Abe M, Langmuir, 30(3), 922, 2014
  22. Sun B, Vorontsov AV, Smirniotis PG, Langmuir, 19(8), 3151, 2003
  23. Hamal DB, Haggstrom JA, Marchin GL, Ikenberry MA, Hohn K, Klabunde KJ, Langmuir, 26(4), 2805, 2010
  24. Paul KK, Ghosh R, Giri PK, Nanotechnology, 27, 315703, 2016
  25. Posa VR, Annavaram V, Koduru JR, Bobbala P, Madhavi V, Somala AR, J. Exp. Nanosci., 11(9), 722, 2016
  26. Foo KY, Hameed BH, Desalin. Water Treat., 19, 255, 2010
  27. Shah GN, Lemilch R, Ind. Eng. Chem. Fundamentals, 9(3), 350, 1970
  28. Cho YS, Ku N, Kim YS, J. Chem. Eng. Jpn., 52(2), 194, 2019
  29. Cho YS, Roh SH, J. Dispersion Sci. Technol., 39(1), 33, 2018
  30. Jang HD, Kim SK, Chang H, Choi JW, Luo J, Huang J, Aerosol Sci. Technol., 47(1), 93, 2013
  31. Park SH, Kim HK, Yoon SB, Lee CW, Ahn D, Lee SI, Roh KC, Kim KB, Chem. Mater., 27, 457, 2015
  32. Yeh TF, Cihlar J, Chang CY, Cheng C, Teng H, Mater. Today, 16, 78, 2013
  33. Oh IA, Shin CH, Cho YS, Korean J. Met. Mater., 54(8), 573, 2016
  34. Cho YS, Shin CH, Korean J. Chem. Eng., 34(2), 555, 2017
  35. Cho YS, Korean J. Met. Mater., 55(4), 150, 2017
  36. Chen ML, Bae JS, Oh WC, Bull. Korean Chem. Soc., 27(9), 1423, 2006
  37. Pathania D, Sharma S, Singh P, Arab. J. Chem., 10, A1445, 2007
  38. Moore C, Perova TS, Kennedy B, Berwickc K, Shaganov IL, Moore RA, Proc. SPIE, 4876, 1247, 2003
  39. Hema M, Arasi AY, Tailselvi P, Anbaasan R, Chem. Sci. Trans., 2(1), 239, 2013
  40. Sharin S, Rahman IA, Ahmad AF, Mohd HMK, Mohamed F, et al., Malays. J. Anal. Sci., 19(6), 1223, 2015
  41. Shaban M, Abukhadra MR, Ibrahim SS, Shahien MG, Appl. Water Sci., 7, 4743, 2017
  42. Sanchez M, Rivero MJ, Ortiz I, Appl. Catal. B: Environ., 101(3-4), 515, 2011
  43. Mobtaker HG, Malekinejad A, Yousefi T, Aghayan H, J. Sci. I. R. I., 28(1), 79, 2017
  44. Wang X, Han SF, Zhang QW, Zhang N, Zhao DD, MATEC Web of Conferences, 238, 03006 (2018).