Issue
Korean Journal of Chemical Engineering,
Vol.37, No.6, 1066-1070, 2020
Investigation on the performance of SnS solar cells grown by sputtering and effusion cell evaporation
SnS is an earth-abundant, non-toxic, and low-cost absorber material for solar cell applications. In this work, the physical properties of SnS thin films and efficiency of SnS solar cells were investigated for different tin metal layer thicknesses of 300 nm (Sn-300), 500 nm (Sn-500), and 700 nm (Sn-700) deposited by DC sputtering followed by the sulfurization using effusion cell evaporation method. The XRD and Raman characterizations confirmed the formation of single-phase SnS compound with orthorhombic structure for the case of Sn-500. The sulfurized films of Sn-500 had remarkable and homogeneous morphology with the optical band gap energy of 1.35 eV. The fabricated device showed an efficiency of 0.74% with an open-circuit voltage of 267mV, short circuit current density of 8.47 mA/cm2, and fill factor of 54.16. By varying the different metal tin layer thicknesses, this is the first report with device efficiency for SnS solar cells grown via effusion cell evaporation technique.
[References]
  1. Reddy VRM, Gedi S, Park C, Miles RW, Reddy KTR, Curr. Appl. Phys., 15(5), 588, 2015
  2. Gedi S, Reddy VRM, Park C, Wook JC, Reddy KTR, Opt. Mater., 42, 468, 2015
  3. Sinsermsuksakul P, Heo J, Noh W, Hock AS, Gordon RG, Adv. Eng. Mater., 1, 1116, 2011
  4. Ham G, Shin S, Park J, Choi H, Kim J, Lee YA, Seo H, Jeon H, ACS Appl. Mater. Interfaces, 5, 8889, 2013
  5. Schneikart A, Schimper HJ, Klein A, Jaegermann W, J. Phys. Appl. Phys., 46, 305109, 2013
  6. Kubiak RA, Driscoll P, Parker EHC, J. Vac. Sci. Technol., 20, 252, 1982
  7. Tiedje HF, Brodie DE, Rev. Sci. Instrum., 71, 2121, 2000
  8. Chakraborty R, Steinmann V, Mangan NM, Brandt RE, et al., Appl. Phys. Lett., 106, 203901, 2015
  9. Minemura T, Miyauchi K, Noguchi K, Ohtsuka K, Nakanishi H, Sugiyama M, Phys. Status Solidi C, 6, 1221, 2009
  10. Yago A, Kibishi T, Akaki Y, Nakamura S, Oomae H, Katagiri H, Araki H, Jpn. J. Appl. Phys., 57, 02CE08, 2018
  11. Revathi N, Bereznev S, Loorits M, Raudoja J, Lehner J, Gurevits J, Traksmaa R, Mikli V, Mellikov E, Volobujeva O, J. Vac. Sci. Technol. Vac. Surf. Films, 32, 061506, 2014
  12. Mikami S, Yokoi T, Sumi H, Aihara S, Khatri I, Sugiyama M, Phys. Status Solidi C, 14, 160016, 2017
  13. Caballero R, Conde V, Leon M, Thin Solid Films, 612, 202, 2016
  14. Jiang T, Ozin GA, J. Mater. Chem., 8, 1099, 1998
  15. Kim J, Kim J, Yoon S, Kang J, Jeon CW, Jo W, J. Phys. Chem. C, 122, 3523, 2018
  16. Robles V, Trigo JF, Guillen C, Herrero J, Thin Solid Films, 582, 249, 2015
  17. Chandrasekhar HR, Mead DG, Phys. Rev. B, 19, 932, 1979
  18. Price LS, Parkin IP, Hardy AME, Clark RJH, Hibbert TG, Molloy KC, Chem. Mater., 11, 1792, 1999
  19. Chao J, Xie Z, Duan X, Dong Y, Wang Z, Xu J, Liang B, Shan B, Ye J, Chen D, Shen G, CrystEngComm, 14, 3163, 2012
  20. Chandrasekhar HR, Humphreys RG, Zwick U, Cardona M, Phys. Rev. B, 15, 2177, 1977
  21. Di Mare S, Menossi D, Salavei A, Artegiani E, Piccinelli F, Kumar A, Mariotto G, Romeo A, Coatings, 7, 34, 2017
  22. Nwofe PA, Reddy KTR, Tan JK, Forbes I, Miles RW, J. Phys. Conf. Ser., 417, 012039, 2013
  23. Pramanik P, Basu PK, Biswas S, Thin Solid Films, 150, 269, 1987
  24. Banai RE, Burton LA, Choi SG, Hofherr F, Sorgenfrei T, Walsh A, To B, Croll A, Brownson JRS, J. Appl. Phys., 116, 013511, 2014
  25. Li H, Cheng S, Zhang J, Huang W, Zhou H, Jia H, World J. Condens. Matter Phys., 5, 10, 2015
  26. Arvizu JAA, Piedrahita MC, Glalan OV, J. Mater. Sci. Mater. Electron., 26, 4541, 2015
  27. Steinmann V, Jaramillo R, Hartman K, Chakraborty R, Brandt RE, Poindexter JR, Lee YS, Sun LZ, Polizzotti A, Park HH, Gordon RG, Buonassisi T, Adv. Mater., 26(44), 7488, 2014