Issue
Korean Journal of Chemical Engineering,
Vol.37, No.6, 1036-1041, 2020
CH4/CO2 separation from biogas stream using porous hydrophobic ceramic hollow fiber membrane contactors
Experiments were performed to separate CO2 from biogas using a ceramic hollow fiber membrane contactor (HFMC). CH4/CO2 mixed gas (34.5% CO2, CH4 balance) and monoethanolamine (MEA) were used. The influence of operating conditions, such as the gas flow rate, liquid flow rate, L/G ratio, CO2 partial pressure, and module type, on the CO2 removal efficiency and CO2 absorption flux was evaluated. As the gas flow rate increased, the CO2 removal efficiency decreased, while the CO2 absorption flux increased. The maximum CO2 removal efficiency was 96% at a gas flow rate of 0.1Nm3 h-1 while the maximum CO2 absorption flux was 7.5 X 10 3 molㆍm-2ㆍs-1 at a gas flow rate of 1Nm3 h-1. Moreover, the CO2 absorption flux and CO2 removal efficiency could be increased by more than 20% using the high-flux module.
[References]
  1. Lunghi P, Bove R, Desideri U, J. Power Sources, 131(1-2), 120, 2004
  2. Bandyopadhyay A, Clean Technol. Environ. Policy, 13(2), 269, 2011
  3. Yeon SH, Seo BK, Park YI, Lee GH, Korean Chem. Eng. Res., 39(6), 709, 2001
  4. Hogan KB, Hoffman JS, Thompson AM, Nature, 354, 181, 1991
  5. Lee SW, Kim EJ, Lee HJ, Park JH, Korean Chem. Eng. Res., 56(3), 297, 2018
  6. Bove R, Lunghi P, Energy Conv. Manag., 47(11-12), 1391, 2006
  7. Park YC, Lee JS, Moon JH, Min BM, Shim DM, Sung HJ, Korean J. Chem. Eng., 34(3), 921, 2017
  8. Atchariyawut S, Jiraratananon R, Wang R, J. Membr. Sci., 304(1-2), 163, 2007
  9. Luo C, Zheng Y, Xu Y, Ding H, Zheng C, Qin C, Feng B, Korean J. Chem. Eng., 32(5), 934, 2015
  10. Atchariyawut S, Jiraratananon R, Wang R, Sep. Purif. Technol., 63(1), 15, 2008
  11. Lantela J, Rasi S, Lehtinen J, Rintala J, Appl. Energy, 92, 307, 2012
  12. Rasi S, Lantela J, Rintala J, Fuel, 115, 539, 2014
  13. Cavenati S, Grande CA, Rodrigues AE, Energy Fuels, 19(6), 2545, 2005
  14. Kim HJ, Hong SI, Korean J. Chem. Eng., 14(5), 382, 1997
  15. Cavenati S, Grande CA, Rodrigues AE, Chem. Eng. Sci., 61(12), 3893, 2006
  16. Jeong D, Yun M, Oh J, Yum I, Lee Y, Korean J. Chem. Eng., 27(3), 939, 2010
  17. Nabian N, Ghoreyshi AA, Rahimpour A, Shakeri M, Korean J. Chem. Eng., 32(11), 2204, 2015
  18. Ghasem N, Al-Marzouqi M, Duidar A, Sep. Purif. Technol., 98, 174, 2012
  19. Lee HJ, Park YG, Kim MK, Lee SH, Park JH, Sep. Purif. Technol., 220, 189, 2019
  20. Mansourizadeh A, Ismail AF, Abdullah MS, Ng BC, J. Membr. Sci., 355(1-2), 200, 2010
  21. Bakeri G, Rezaei-DashtArzhandi M, Ismail AF, Matsuura T, Abdullah MS, Cheer NB, Korean J. Chem. Eng., 34(1), 160, 2017
  22. Magnone E, Lee HJ, Che JW, Park JH, J. Ind. Eng. Chem., 42, 19, 2016
  23. Lee HJ, Magnone E, Park JH, J. Membr. Sci., 494, 143, 2015
  24. Lee HJ, Park JH, J. Membr. Sci., 518, 79, 2016
  25. Yu XH, An L, Yang J, Tu ST, Yan JY, J. Membr. Sci., 496, 1, 2015
  26. Lv YX, Yu XH, Tu ST, Yan JY, Dahlquist E, Appl. Energy, 97, 283, 2012
  27. Kim YE, Choi JH, Yun SH, Nam SC, Yoon YI, Korean J. Chem. Eng., 33(12), 3465, 2016
  28. Lee HJ, Binns M, Park SJ, Magnone E, Park JH, Korean J. Chem. Eng., 36(10), 1669, 2019
  29. Zakeri A, Einbu A, Svendsen HF, Chem. Eng. Sci., 73, 285, 2012
  30. Kim Y, Kim S, Kim J, Cho Y, Park H, Lee P, Park Y, Park H, Nam S, Membr. J., 28, 21, 2018
  31. Boributh S, Assabumrungrat S, Laosiripojana N, Jiraratananon R, J. Membr. Sci., 380(1-2), 21, 2011
  32. Li JL, Chen BH, Sep. Purif. Technol., 41(2), 109, 2005