Issue
Korean Journal of Chemical Engineering,
Vol.37, No.6, 1029-1035, 2020
Effects of magnesium loading on ammonia capacity and thermal stability of activated carbons
Mg-loaded activated carbons were prepared by adding various amounts of Mg (1 to 20 wt%) via ultrasonic- assisted impregnation to investigate the effects on the adsorption and desorption characteristics of ammonia. Mgloaded activated carbons were characterized by TGA, BET, SEM, EDS mapping, and NH3-TPD analysis. Mg was homogeneously dispersed on the activated carbon and NH3-TPD analysis confirmed improved desorption and thermal stability for the 10 wt% Mg sample, named AC-Mg(10). AC-Mg(10) retained the highest desorption for five cycles and showed average desorption amount of 0.788mmol NH3/g. During the breakthrough analysis, the AC-Mg(10) showed an initial ammonia adsorption capacity of 0.81mmol NH3/g and average adsorption capacity of 0.69mmol NH3/g over 30 adsorption and desorption cycles.
[References]
  1. Shipman MA, Symes MD, Catal. Today, 286, 57, 2017
  2. Smil V, Nature, 400, 415, 1999
  3. Jewell S, Kimball SM, US Geological Survey, 9, 196, 2015
  4. Kim K, Lee SJ, Kim DY, Yoo CY, Choi JW, Kim JN, Woo Y, Yoon HC, Han JI, ChemSusChem, 11, 120, 2018
  5. Chen S, Perathoner S, Ampelli C, Mebrahtu C, Su D, Centi G, Angew. Chem.-Int. Edit., 56, 2699, 2017
  6. Jeong EY, Yoo CY, Jung CH, Park JH, Park YC, Kim JN, Oh SG, Woo Y, Yoon HC, ACS Sustain. Chem. Eng., 5, 9662, 2017
  7. Kordali V, Kyriacou G, Lambrou C, Chem. Commun., 17, 1673, 2000
  8. Renner JN, Greenlee LF, Ayres KE, Herring AM, Electrochem. Soc. Interface, 24, 51, 2015
  9. Bandosz TJ, Petit C, J. Colloid Interface Sci., 338(2), 329, 2009
  10. Ghauri M, Tahir M, Abbas T, Khurram MS, Shehzad K, Sci. Int., 24, 411, 2012
  11. Goncalves M, Sanchez-Garcia L, Jardim EDO, Silvestre-Albero J, Rodriguez-Reinoso F, Environ. Sci. Technol., 45, 10605, 2011
  12. Guo J, Xu WS, Chen YL, Lua AC, J. Colloid Interface Sci., 281(2), 285, 2005
  13. Huang CC, Li HS, Chen CH, J. Hazard. Mater., 159(2-3), 523, 2008
  14. Kim SD, Magnone E, Park JH, Ryu JY, J. Porous Mat., 25, 297, 2018
  15. Rieth AJ, Dinca M, J. Am. Chem. Soc., 140(9), 3461, 2018
  16. Seredych M, Petit C, Tamashausky AV, Bandosz TJ, Carbon, 47, 445, 2009
  17. Chen Y, Zhang F, Wang Y, Yang C, Yang J, Li J, Microporous Mesoporous Mater., 258, 170, 2018
  18. Khabzina Y, Farrusseng D, Microporous Mesoporous Mater., 265, 143, 2018
  19. Qajar A, Peer M, Andalibi MR, Rajagopalan R, Foley HC, Microporous Mesoporous Mater., 218, 15, 2015
  20. Molina L, Hammer B, Phys. Rev. B, 69, 155424, 2004
  21. de Farias AMD, Barandas APMG, Perez RF, Fraga MA, J. Power Sources, 165(2), 854, 2007
  22. Park JH, Baek JH, Hwang RH, Yi KB, Clean Technol., 23(4), 429, 2017
  23. Baek JI, Ryu J, Lee JB, Eom TH, Kim KS, Yang SR, Ryu CK, Energy Procedia, 4, 349, 2011
  24. Zhao M, Minett AI, Harris AT, Energy Environ. Sci., 6, 25, 2013
  25. Choudhary VR, Uphade BS, Mamman AS, Catal. Lett., 32(3-4), 387, 1995
  26. Iriondo A, Barrio V, Cambra J, Arias P, Guemez M, Navarro R, Sanchez-Sanchez M, Fierro J, Top. Catal., 49, 46, 2008
  27. Parmaliana A, Arena F, Frusteri F, Coluccia S, Marchese L, Martra G, Chuvilin A, J. Catal., 141, 34, 1993
  28. Silva WM, Ribeiro H, Seara LM, Calado HD, Ferlauto AS, Paniago RM, Leite CF, Silva GG, J. Braz. Chem. Soc., 23, 1078, 2012
  29. Tian X, Hong G, Liu Y, Jiang B, Yang Y, RSC Adv., 4, 36316, 2014
  30. Al Amer AM, Laoui T, Abbas A, Al-Aqeeli N, Patel F, Khraisheh M, Atieh MA, Hilal N, Mater. Des., 89, 549, 2016
  31. Baek JH, Jeong JM, Park JH, Yi KB, Rhee YW, Trans. Korean Hydrog. New Energy Soc., 26, 423, 2015
  32. Jeong JM, Park JH, Baek JH, Hwang RH, Jeon SG, Yi KB, Korean J. Chem. Eng., 34(1), 81, 2017
  33. Wu Z, Jin R, Liu Y, Wang H, Catal. Commun., 9, 2217, 2008