Issue
Korean Journal of Chemical Engineering,
Vol.37, No.6, 955-960, 2020
Gas-phase dehydration of glycerol to acrolein over different metal phosphate catalysts
We conducted a comparative study of gas phase dehydration of glycerol to acrolein over aluminium phosphate, iron phosphate and nickel phosphate catalysts prepared by a simple replacement reaction method (AlP, FeP and NiP). The textural properties, acid amounts, acid types, and coke contents of the samples were studied. The results showed that all metal phosphate catalysts remained in an amorphous state. The glycerol conversion was proportional to the acid amount of metal phosphate catalyst in the glycerol dehydration reaction. Higher value of B/L was more likely to produce acrolein. Among the metal phosphate catalysts, FeP showed superior performance due to its suitable textural and acid properties. After 2 h on stream, high glycerol conversion (96%), acrolein selectivity (82%) and acrolein yield (79%) were achieved on the FeP catalyst at 280 °C. The catalyst deactivation was ascribed to carbon deposition on the catalyst surface blocking the active sites during the glycerol dehydration reaction.
[References]
  1. Talebian-Kiakalaieh A, Amin NAS, Renew. Energy, 114, 794, 2017
  2. Anitha M, Kamarudin SK, Kofli NT, Chem. Eng. J., 295, 119, 2016
  3. Chagas P, Thibau MA, Breder S, Souza PP, Caldeira GS, Portilho MF, Castro CS, Oliveira LCA, Chem. Eng. J., 369, 1102, 2019
  4. Shen LQ, Yin HB, Wang AL, Feng YH, Shen YT, Wu ZA, Jiang TS, Chem. Eng. J., 180, 277, 2012
  5. Ma TL, Yun Z, Xu W, Chen LG, Li L, Ding JF, Shao R, Chem. Eng. J., 294, 343, 2016
  6. Talebian-Kiakalaieh A, Amin NAS, Zakaria ZY, J. Ind. Eng. Chem., 34, 300, 2016
  7. Ma TL, Ding JF, Shao R, Xu W, Yun Z, Chem. Eng. J., 316, 797, 2017
  8. Ding J, Ma T, Cui M, Shao R, Guan R, Wang P, Mol. Catal., 461, 1, 2018
  9. Ding J, Ma T, Shao R, Xu W, Wang P, Song X, Guan R, Yeung K, Han W, New. J. Chem., 42, 14271, 2018
  10. Deleplanque J, Dubois JL, Devaux JF, Ueda W, Catal. Today, 157(1-4), 351, 2010
  11. Estevez R, Lopez-Pedrajas S, Blanco-Bonilla F, Luna D, Bautista FM, Chem. Eng. J., 282, 179, 2015
  12. Akizuki M, Sano K, Oshima Y, J. Supercrit. Fluids, 113, 158, 2016
  13. Sung KH, Cheng S, RSC Adv., 7, 41880, 2017
  14. Fernandes A, Ribeiro MF, Lourenco JP, Catal. Commun., 95, 16, 2017
  15. Lago CD, Decolatti HP, Tonutti LG, Dalla Costa BO, Querini CA, J. Catal., 366, 16, 2018
  16. Shan J, Li Z, Zhu S, Liu H, Li J, Wang J, Fan W, Catalysts, 9, 121, 2019
  17. Talebian-Kiakalaieh A, Amin NAS, Chinese J. Catal., 38, 1697, 2017
  18. Lopez-Pedrajas S, Estevez R, Navarro R, Luna D, Bautista FM, J. Mol. Catal. A-Chem., 421, 92, 2016
  19. Lopez-Pedrajas S, Estevez R, Blanco-Bonilla F, Luna D, Bautista FM, J. Chem. Technol. Biot., 92, 2661, 2017
  20. Li Y, Zhao C, Chem. Mater., 28, 5659, 2016
  21. Fiorito D, Folliet S, Liu Y, Mazet C, ACS Catal., 8, 1392, 2018
  22. Lee SK, Lee UH, Hwang YK, Chang JS, Jang NH, Catal. Today, 324, 154, 2019
  23. Emeis CA, J. Catal., 141, 347, 1993
  24. Liu B, Jiang P, Zhang P, Zhao H, Huang J, C. R. Chim., 20, 540, 2017
  25. Chai SH, Wang HP, Liang Y, Xu BQ, J. Catal., 250(2), 342, 2007
  26. Gadgil MM, Kulshreshtha SK, J. Solid State Chem., 111, 357, 1994
  27. Harilal A, Dasireddy VDBC, Friedrich HB, Catal. Lett., 146(7), 1169, 2016
  28. Wu SK, Lai PC, Lin YC, Catal. Lett., 144(5), 878, 2014
  29. Suprun W, Lutecki M, Haber T, Papp H, J. Mol. Catal. A-Chem., 309(1-2), 71, 2009
  30. Stosic D, Bennici S, Sirotin S, Calais C, Couturier JL, Dubois JL, Travert A, Auroux A, Appl. Catal. A: Gen., 447, 124, 2012
  31. Tsukuda E, Sato S, Takahashi R, Sodesawa T, Catal. Commun., 8, 1349, 2007