Issue
Korean Journal of Chemical Engineering,
Vol.37, No.6, 946-954, 2020
A novel ternary Pd-GO/N-doped TiO2 hierarchical visible-light sensitive photocatalyst for nanocomposite membrane
We investigated the visible-light sensitive photocatalytic ability of a designed ternary Pd-GO/TiON nanocomposite for use as an effective photocatalyst in membranes. We succeeded in synthesizing the TiO2-based photocatalyst for Suzuki coupling reaction and application of this photocatalyst for fabricating high performance photocatalytic membrane. In this regard, palladium metal as a complementary metal in combination with N-doped TiO2 (TiON) and graphene oxide (GO) nanosheets was utilized to synthesize the upgraded version of the visible light sensitive nanocomposite photocatalyst. The synthesis of Pd-GO/TiON hierarchical nanostructure was confirmed by detecting Ti, Pd, C, O and N elements by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray (EDX) and EDX mapping analysis. Then, a series of PVDF-based photocatalytic nanocomposite membranes (PhNMs) filled with Pd-GO/TiON was fabricated. Evaluating the yield of Pd-GO/TiON photocatalyst was around 99% and 70% for heterogeneous system and the prepared PhNM containing 3% Pd-GO/TiON, respectively. Although, yield of Pd-GO/TiON photocatalyst in membrane is not comparable with the high yield reported by other researchers in heterogeneous system; however, it can be considered as a valuable result because of the importance of photocatalytic reactions and the environmental advantages of membrane technology. Furthermore, various analyses were also performed to study the synthesized photocatalysts and the prepared photocatalytic membranes, including thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and diffuse reflectance spectrophotometry (DRS).
[References]
  1. Kim J, van der Bruggen B, Environ. Pollut., 158, 2335, 2010
  2. Qiu L, Zhang X, Yang W, Wang Y, Simon GP, Li D, Chem. Commun., 477, 5810, 2011
  3. Aerts P, Kuypers S, Genne I, Leysen R, Mewis J, Vankelecom IFJ, Jacobs PA, J. Phys. Chem. B, 110(14), 7425, 2006
  4. Strathmann H, AIChE J., 47(5), 1077, 2001
  5. Tiraferri A, Vecitis CD, Elimelech M, ACS Appl. Mater. Interfaces, 3, 2869, 2011
  6. Hinds BJ, Chopra N, Rantell T, Andrews R, Gavalas V, Bachas LG, Science, 303, 62, 2004
  7. Brettreich M, Burghardt S, Bottcher C, Bayerl T, Bayerl S, Hirsch A, Angew. Chem.-Int. Edit., 39, 1845, 2000
  8. Zhao X, Lv L, Pan BC, Zhang WM, Zhang SJ, Zhang QX, Chem. Eng. J., 170(2-3), 381, 2011
  9. Ng LY, Mohammad AW, Leo CP, Hilal N, Desalination, 308, 15, 2013
  10. Prakash S, Charan C, Singh AK, Shahi VK, Appl. Catal. B: Environ., 132, 62, 2013
  11. Buonomenna M, Choi S, Drioli E, Asia.Pac. J. Chem. Eng., 5, 26, 2010
  12. Shu J, Grandjean B, Neste AV, Kaliaguine S, Can. J. Chem. Eng., 69, 1036, 1991
  13. Mahdavi H, Rahimi A, Alam LA, Polym. Bull., 74(9), 3557, 2017
  14. Molinari R, Palmisano L, Drioli E, Schiavello M, J. Membr. Sci., 206(1-2), 399, 2002
  15. Diebold U, Appl. Phys. A-Mater. Sci. Process., 76, 681, 2003
  16. Hashimoto K, Irie H, Fujishima A, Jpn. J. Appl. Phys., 44, 8269, 2005
  17. Daghrir R, Drogui P, Robert D, Ind. Eng. Chem. Res., 52(10), 3581, 2013
  18. Park J, Lee JY, Cho JH, J. Appl. Phys., 100, 113534, 2006
  19. Li YL, Zhang ZQ, Pei LY, Li XG, Fan T, Ji J, Shen JF, Ye MX, Appl. Catal. B: Environ., 190, 1, 2016
  20. Li Q, Li YW, Wu PG, Xie RC, Shang JK, Adv. Mater., 20(19), 3717, 2008
  21. Li Q, Xie R, Mintz EA, Shangw JK, J. Am. Ceram. Soc., 90(12), 3863, 2007
  22. Kang GD, Cao YM, J. Membr. Sci., 463, 145, 2014
  23. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS, Adv. Mater., 22(35), 3906, 2010
  24. Sathish M, Viswanathan B, Viswanath R, Gopinath CS, Chem. Mater., 17, 6349, 2005
  25. Ahmadian-Alam L, Teymoori M, Mahdavi H, J. Polym. Res., 25, 13, 2018
  26. Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mulhaupt R, J. Am. Chem. Soc., 131(23), 8262, 2009
  27. Nguyen-Phan TD, Pham VH, Shin EW, Pham HD, Kim S, Chung JS, Kim EJ, Hur SH, Chem. Eng. J., 170(1), 226, 2011
  28. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558, 2007
  29. Thamaphat K, Limsuwan P, Ngotawornchai B, Kasetsart J., 42, 357, 2008
  30. Mollavali M, Falamaki C, Rohani S, Int. J. Hydrog. Energy, 40, 12239, 2015
  31. Zhao C, Xu X, Chen J, Yang F, J. Environ. Chem. Eng., 1, 349, 2013
  32. Oh SJ, Kim N, Lee YT, J. Membr. Sci., 345(1-2), 13, 2009
  33. Cao XC, Ma J, Shi XH, Ren ZJ, Appl. Surf. Sci., 253(4), 2003, 2006
  34. Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mulhaupt R, J. Am. Chem. Soc., 131(23), 8262, 2009
  35. Pacile D, Meyer J, Rodriguez AF, Papagno M, Gomez-Navarro C, Sundaram R, Burghard M, Kern K, Carbone C, Kaiser U, Carbon, 49, 966, 2011
  36. Yu LY, Shen HM, Xu ZL, J. Appl. Polym. Sci., 113(3), 1763, 2009
  37. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339, 1958