Issue
Korean Journal of Chemical Engineering,
Vol.37, No.6, 938-945, 2020
Defect-controlled Fe-N-doped carbon nanofiber by ball-milling for oxygen reduction reaction
We demonstrate that control of the defect level on carbon materials is effective for enhancing the oxygen reduction reaction (ORR) performance of nonprecious-metal catalysts. Vapor-grown carbon nanofiber (VGCNF) with high crystallinity and high electronic conductivity was chosen as the substrate of our ORR catalysts. To induce defects on the VGCNF, it was subjected to ball-milling for various controlled times, yielding BMx-VGCNF (x represents the ball-milling time, 0-6 h). The defect level introduced on the VGCNF was effectively regulated by controlling the ballmilling time. Although the density of defect sites increased with increasing ball-milling time, the surface area was highest in BM2-VGCNF. Nonprecious-metal ORR catalysts (BMx-Fe-VGCNF) were prepared by NH3 pyrolysis of Fe-ionadsorbed BMx-VGCNF. The ball-milling of VGCNF was effective to introduce nitrogen onto the catalyst. In particular, the controlled ball-milling was important to generate highly active sites on the catalyst surface. Among the catalysts studied, BM2-Fe-VGCNF exhibited the best ORR performance, which was 2.5-times greater than that of BMx-Fe-VGCNF (x=4, 6).
[References]
  1. Sopian K, Daud WRW, Renew. Energy, 31(5), 719, 2006
  2. Liu HS, Song CJ, Zhang L, Zhang JJ, Wang HJ, Wilkinson DP, J. Power Sources, 155(2), 95, 2006
  3. Markovic NM, Grgur BN, Ross PN, J. Phys. Chem. B, 101(27), 5405, 1997
  4. Steele BCH, Heinzel A, Nature, 414, 345, 2001
  5. Wee JH, Lee KY, Kim SH, J. Power Sources, 165(2), 667, 2007
  6. Yu XW, Ye SY, J. Power Sources, 172(1), 145, 2007
  7. Lefevre M, Dodelet JP, Bertrand P, J. Phys. Chem. B, 106(34), 8705, 2002
  8. Wagner AJ, Wolfe GM, Fairbrother DH, Appl. Surf. Sci., 219(3-4), 317, 2003
  9. Alonso-Vante N, Fieber-Erdmann M, Rossner H, Holub-Krappe E, Giorgetti C, Tadjeddine A, Dartyge E, Fontaine A, Frahm R, J. Phys. IV, 7, 887, 1997
  10. Matter PH, Zhang L, Ozkan US, J. Catal., 239(1), 83, 2006
  11. Mustain WE, Prakash J, J. Power Sources, 170(1), 28, 2007
  12. Adcock PA, Pacheco SV, Norman KM, Uribe FA, J. Electrochem. Soc., 152(2), A459, 2005
  13. Tripkovi V, Abild-Pedersen F, Studt F, Cerri I, Nagami T, Bligaard T, Rossmeisl J, Chem. Cat. Chem., 4, 228, 2012
  14. Samiee L, Shoghi F, Vinu A, Appl. Surf. Sci., 265, 214, 2013
  15. Ham DJ, Lee JS, Energies, 2, 873, 2009
  16. Rosenbaum M, Zhao F, Schroder U, Scholz F, Angew. Chem.-Int. Edit., 45, 6658, 2006
  17. Stariha S, Serov A, Artyushkova K, Atanassov P, J. Electrochem. Soc., 37, 1295, 2015
  18. Gumeci C, Leonard N, Halevi B, Barton SC, J. Electrochem. Soc., 26, 1579, 2015
  19. Atanassov P, Serov A, Artyushkova K, Kiefer B, J. Electrochem. Soc., 21, 950, 2014
  20. Zhang J, Dai L, ACS Catal., 5, 7244, 2015
  21. Kim DW, Li O, Saito N, Phys. Chem. Chem. Phys., 17, 407, 2015
  22. Zhang H, Osgood H, Xie X, Shao Y, Wu G, Nano Energy, 31, 331, 2017
  23. Chung Hoon T., Cullen David A., Higgins Drew, Sneed Brian T., Holby Edward F., More Karren L., Zelenay Piotr, Science, 357(6350), 479, 2017
  24. Holby EF, Wu G, Zelenay G, Taylor CD, J. Phys. Chem. C, 118, 14388, 2014
  25. Charreteur F, Jaouen F, Ruggeri S, Dodelet JP, Electrochim. Acta, 53(6), 2925, 2008
  26. Ren G, Lu X, Li Y, Zhu Y, Dai L, ACS Appl. Mater. Interfaces, 8, 4118, 2016
  27. Shen H, Thomas T, Rasaki SA, Saad A, Hu C, Wang J, Yang M, Electrochem. Energy Rev., 2, 252, 2019
  28. Wang Q, Zhou ZY, Lai YJ, You Y, Liu JG, Wu XL, Terefe E, Chen C, Song L, Rauf M, Tian N, Sun SG, J. Am. Chem. Soc., 136(31), 10882, 2014
  29. Jiang WJ, Gu L, Li L, Zhang Y, Zhang X, Zhang LJ, Wang JQ, Hu JS, Wei ZD, Wan LJ, J. Am. Chem. Soc., 138(10), 3570, 2016
  30. Wu Z, Xu X, Hu B, Liang HW, Lin Y, Chen LF, Yu SH, Angew. Chem.-Int. Edit., 54, 8179, 2015
  31. Yasuda S, Furuya A, Uchibori Y, Kim J, Murakoshi K, Adv. Funct. Mater., 26(5), 738, 2016
  32. Feng L, Xie N, Zhong J, Materials, 7, 3919, 2014
  33. Liu D, Long Y, ACS Appl. Mater. Interfaces, 7, 24063, 2015
  34. Men B, Sun Y, Liu J, Tang Y, Chen Y, Wan P, Pan J, ACS Appl. Mater. Interfaces, 8, 19533, 2016
  35. Xing T, Li LH, Hou L, Hu X, Zhou S, Peter R, Chen Y, Carbon, 57, 515, 2013
  36. Johra FT, Lee JW, Jung WG, J. Ind. Eng. Chem., 20(5), 2883, 2014
  37. Gao X, Yokota N, Oda H, Tanaka S, Hokamoto K, Chen P, Crystals, 8, 104, 2018
  38. Proietti E, Ruggeri S, Dodelet JP, J. Electrochem. Soc., 155(4), B340, 2008
  39. Lefevre M, Dodelet JP, Electrochim. Acta, 53(28), 8269, 2008
  40. Liu G, Li XG, Ganesan P, Popov BN, Appl. Catal. B: Environ., 93(1-2), 156, 2009
  41. Wu G, More KL, Johnston CM, Zelenay P, Science, 332(6028), 443, 2011
  42. Hu Y, Jensen JO, Zhang W, Martin S, Chenitz R, Pan C, Li Q, J. Mater. Chem. Assn, 3, 1752, 2015
  43. Yang WX, Liu XJ, Yue XY, Jia JB, Guo SJ, J. Am. Chem. Soc., 137(4), 1436, 2015
  44. Niu YL, Huang XQ, Hu WH, J. Power Sources, 332, 305, 2016
  45. Artyushkova K, Matanovic I, Halevi B, Atanassov P, J. Phys. Chem. C, 121, 2836, 2017