Issue
Korean Journal of Chemical Engineering,
Vol.37, No.6, 1097-1106, 2020
A facile method to synthesize magnetic nanoparticles chelated with Copper(II) for selective adsorption of bovine hemoglobin
A novel and uncomplicated synthesis method of Cu2+-chelating with carboxyl groups that directly-modified NiFe2O4 magnetic microspheres (NiFe2O4-PAA-Cu2+) was fabricated for selective enrichment and separation of bovine hemoglobin (BHb). First, a carboxyl group directly-modified on NiFe2O4 magnetic microspheres was gained through a facile one-pot solvothermal method. Second, Cu2+ from CuSO4 was brought into use to react with carboxyl groups under mechanical stirring at room temperature. The resulting magnetic microspheres were characterized by distinct instruments that included transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM) and scanning electron microscope (SEM) to examine the size, morphology, composition and magnetization characterization. The results indicated that the NiFe2O4-PAA-Cu2+ microspheres exhibited good saturation magnetization(36.686 emu g?1), which can facilitate magnetic separation under the help of an outside magnetic field. Also, good dispersion and high adsorption ability to BHb (783.53mg g?1) can be applied to selective enrichment for bovine hemoglobin and used for selective sorption of BHb protein in bovine blood samples.
[References]
  1. Zhai QZ, Zhang XX, Asian J. Chem., 20, 5060, 2008
  2. Wang BH, Shao Q, New J. Chem., 41, 5651, 2017
  3. Graves DJ, Trends Biotechnol., 17, 127, 1999
  4. Wang YQ, Zhang HM, Int. J. Biol. Macromol., 41, 243, 2007
  5. Liu YJ, Wang YZ, Anal. Chim. Acta, 936, 168, 2016
  6. Li DY, Wang YZ, J. Mater. Chem. B, 2, 5659, 2014
  7. Tetala KKR, Skrzypek K, Levisson M, Stamatialis DF, Sep. Purif. Technol., 115, 20, 2013
  8. Wang JD, Tan SY, Talanta, 190, 210, 2018
  9. Din C, Ma XD, J. Chromatogr. A, 1424, 18, 2015
  10. Liu BS, Yang XN, Luminescence, 29, 211, 2014
  11. Guo ZY, Zhang Y, ACS Appl. Mater. Interfaces, 8, 29734, 2016
  12. Wuenschell GE, Naranjo E, Arnold FH, Bioprocess Eng., 5, 199, 1990
  13. Zhang Y, Xing LG, ACS Appl. Mater. Interfaces, 7, 5116, 2015
  14. Zhai Q, Zhang X, Asian J. Chem., 20, 5060, 2008
  15. Mu PQ, Feng DR, J. Biochem., 150, 491, 2011
  16. Wang JJ, Zhang R, Talanta, 176, 308, 2018
  17. Du KF, Liu XH, ACS Sustainable Chem. Eng., 6, 11578, 2018
  18. Kip C, Tosunb RB, Talanta, 200, 100, 2019
  19. Guo ZY, Zhang Y, ACS Appl. Mater. Interfaces, 8, 29734, 2016
  20. Zhang Y, Xing LG, ACS Appl. Mater. Interfaces, 7, 5116, 2015
  21. Guo TY, Xia YQ, Biomaterials, 25, 5905, 2004
  22. Jia XP, Xu ML, Analyst, 138, 651, 2013
  23. Kan XW, Zhao Q, Shao DL, Geng Z, Wang ZL, Zhu JJ, J. Phys. Chem. B, 114(11), 3999, 2010
  24. Yang XD, Zhang M, Zheng J, Li WZ, Gan WJ, Xu JL, Hayat T, Alharbi NS, Yang F, Appl. Surf. Sci., 439, 128, 2018
  25. Zhang M, He XW, Nanotechnology, 22, 065705, 2011
  26. Zhang M, He XW, J. Mater. Chem., 20, 10696, 2010
  27. Zhang H, Wang WW, New J. Chem., 42, 3990, 2018
  28. Zheng JN, Lin Z, J. Mater. Chem. B., 2, 6207, 2014
  29. Zhang YW, Zhang M, J. Alloy. Compd., 695, 3256, 2017
  30. Zheng JN, Lin Z, J. Mater. Chem. B., 3, 2185, 2015
  31. Gomez B, Rubio S, Anal. Chem., 81, 9012, 2009
  32. Deng H, Li X, Peng Q, Angew. Chem., 117, 2842, 2005
  33. Deng YH, Deng CH, Qi DW, Liu C, Liu J, Zhang XM, Zhao DY, Adv. Mater., 21(13), 1377, 2009
  34. Niasari MS, Davar F, Polyhedron, 28, 1455, 2009
  35. Hu YZ, Zhao CF, Yin L, Wen T, Yang Y, Ai YJ, Wang XK, Chem. Eng. J., 349, 347, 2018
  36. Mirahmadi-Zare SZ, Allafchian A, Protein Expression and Purification, 121, 52 (2016).
  37. Li JH, Chen MJ, Colloids Surf. B: Biointerfaces, 146, 468, 2016
  38. Wan W, Liang QL, Analyst, 141, 4568, 2016
  39. Lu AH, Salabas EL, Angew. Chem.-Int. Edit., 46, 1222, 2007
  40. Faraji M, Yamini Y, Chem. Soc., 7, 1, 2010
  41. Salimi K, Usta DD, RSC Adv., 7, 8718, 2017
  42. Zhao M, Deng CH, Chem. Commun., 50, 6228, 2014
  43. Yao X, Ma XD, RSC Adv., 7, 29330, 2017
  44. Zhang M, Wang YT, Zhang YW, Ding L, Zheng J, Xu JL, Appl. Surf. Sci., 375, 154, 2016
  45. Block H, Maertens B, Methods Enzymol., 463, 440, 2009
  46. Maensiri S, Masingboon C, Scripta Mater., 56, 797, 2007
  47. Sivakumar P, Ramesh R, Mater. Res. Bullet., 46, 2204, 2011
  48. Cheng YL, Zhao Y, Zhang YF, Cao XQ, J. Colloid Interface Sci., 344(2), 321, 2010
  49. Kurtana U, Gungunes H, Ceram. Int., 42, 7987, 2016
  50. Yue Q, Li JL, Luo W, Zhang Y, Elzatahry AA, Wang XQ, Wang C, Li W, Cheng XW, Alghamdi A, Abdullah AM, Deng YH, Zhao DY, J. Am. Chem. Soc., 137(41), 13282, 2015
  51. Rouquerol F, Rouquerol J, Adsorption by powders and porous solids: principles, methodology and applications, 2nd Ed., Elsevier, Amsterdam, 11 (2014).
  52. Zhang Y, Guo ZY, Carbon, 122, 194, 2017
  53. Satyanarayana L, Reddy KM, Manorama SV, Mater. Chem. Phys., 82(1), 21, 2003
  54. Liu J, Bin YZ, J. Phys. Chem. C, 116, 134, 2012
  55. Jian GQ, Liu YX, Nanoscale, 4, 6336, 2012
  56. Gao RX, Cui XH, Talanta, 150, 46, 2016
  57. Liu YJ, Wang YZ, Anal. Chim. Acta, 936, 168, 2016
  58. Zhang M, Cheng D, Asian J., 5, 1332, 2010
  59. Gao RX, Mu XR, J. Mater. Chem. B., 2, 1733, 2014
  60. Wang JD, Guan HY, ACS Biomater. Sci. Eng., 5, 2740, 2019
  61. Altıntas EB, Turkmen D, Colloids Surf. B: Biointerfaces, 85, 235, 2011
  62. Zhang Y, Xing LG, ACS Appl. Mater. Interfaces, 7, 5116, 2015
  63. Shi L, Tang YH, J. Sep. Sci., 39, 2876, 2016