Issue
Korean Journal of Chemical Engineering,
Vol.37, No.5, 891-897, 2020
Solvo-hydrothermal synthesis of calcium phosphate nanostructures from calcium inositol hexakisphosphate precursor in water-ethanol mixed solutions
We report the synthesis and characterization of crystalline calcium phosphate (CaP) nanostructures from calcium inositol hexakisphosphate (CaIP6) precursor in water-ethanol mixed solutions. We show how these CaPs can be prepared by a solvo-hydrothermal reaction and determined their compositions and structures using a battery of material characterization techniques. Our results show that only the hydroxyapatite (HAP) and dicalcium phosphate anhydrous (DCPA) phases of CaP were present in the nanostructures produced in water-ethanol mixtures, and that HAP/DCPA ratio of the rod- and plate-shaped CaP nanostructures produced were affected by the amount of ethanol present in these mixtures. The described method can be used to improve morphological control of CaP-based biomaterials and has potential use in bone regenerative medicine.
[References]
  1. Combes C, Cazalbou S, Rey C, Minerals, 6, 34, 2016
  2. Dorozhkin SV, Materials, 6, 3840, 2013
  3. Epple M, Ganesan K, Heumann R, Klesing J, Kovtun A, Neumann S, Sokolova V, J. Mater. Chem., 20, 18, 2010
  4. Habraken W, Habibovic P, Epple M, Bohner M, Mater. Today, 19, 69, 2016
  5. Shen YQ, Zhu YJ, Chen FF, Jiang YY, Xiong ZC, Chen F, J. Mater. Chem. B, 6, 4985, 2018
  6. Zhao J, Liu Y, Sun WB, Zhang H, Chem. Cent. J., 5, 1, 2011
  7. Nagano M, Nakamura T, Kokubo T, Tanahashi M, Ogawa M, Biomaterials, 17, 1771, 1996
  8. Surmenev RA, Surmeneva MA, Ivanova AA, Acta Biomater., 10, 557, 2014
  9. Mi R, Liu Y, Chen X, Shao Z, Nanoscale, 8, 20096, 2016
  10. Bose S, Tarafder S, Acta Biomater., 8, 1401, 2012
  11. Wang KW, Zhu YJ, Chen XY, Zhai WY, Wang Q, Chen F, Chang JA, Duan YR, Chem. Asian J., 5, 2477, 2010
  12. Yang LX, Yin JJ, Wang LL, Xing GX, Yin P, Liu QW, Ceram. Int., 38, 495, 2012
  13. Delgado-Lopez JM, Iafisco M, Rodriguez-Ruiz I, Gomez-Morales J, J. Inorg. Biochem., 127, 261, 2013
  14. Lin KL, Wu CT, Chang J, Acta Biomater., 10, 4071, 2014
  15. Sadat-Shojai M, Khorasani MT, Jamshidi A, J. Cryst. Growth, 361, 73, 2012
  16. Ito H, Oaki Y, Imai H, Cryst. Growth Des., 8, 1055, 2008
  17. Jiang YY, Zhu YJ, Chen F, Wu J, Ceram. Int., 41, 6098, 2015
  18. Eliaz N, Metoki N, Materials, 10, 334, 2017
  19. Haider A, Haider S, Han SS, Kang IK, RSC Adv., 7, 7442, 2017
  20. Fihri A, Len C, Varma RS, Solhy A, Coord. Chem. Rev., 347, 48, 2017
  21. Tas AC, J. Am. Ceram. Soc., 92(12), 2907, 2009
  22. Cai YR, Tang RK, J. Mater. Chem., 18, 3775, 2008
  23. Xiao DQ, Tan Z, Fu YK, Duan K, Zheng XT, Lu X, Weng J, Ceram. Int., 40, 10183, 2014
  24. Shamsuddin A, von Fraunhofer J, US Pattern Application Publication, US 2007/0212449 A1 (2007).
  25. Grases F, Ramis M, Costa-Bauza A, Urol. Res., 28, 136, 2000
  26. Xiao DQ, Yang F, Zhou X, Chen Z, Duan K, Weng J, Feng G, RSC Adv., 7, 44371, 2017
  27. He ZQ, Honeycutt CW, Zhang TQ, Bertsch PM, J. Environ. Qual., 35, 1319, 2006
  28. Goto T, Kim IY, Kikuta K, Ohtsuki C, Ceram. Int., 38, 1003, 2012
  29. Hao LJ, Yang H, Du SL, Zhao NR, Wang YJ, Mater. Lett., 131, 252, 2014
  30. Dardouri M, Borges JP, Omrani AD, Ceram. Int., 43, 3784, 2017
  31. Sun RX, Yang LL, Zhang YX, Chu F, Wang GY, Lv YP, Chen KZ, CrystEngComm, 18, 8030, 2016
  32. Ganesan K, Epple M, New J. Chem., 32, 1326, 2008
  33. Han JH, Chung SW, Appl. Chem. Eng., 29(6), 740, 2018
  34. Yoshimura M, Sujaridworakun P, Koh F, Fujiwara T, Pongkao D, Ahniyaz A, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 24, 521, 2004
  35. Larsen MJ, Thorsen A, Jensen SJ, Calcified Tissue Int., 37, 189, 1985
  36. Gelsema W, De Ligny C, Remijnse A, Blijleven H, Recueil. des. Travaux. Chimiques. Des. Pays., 85, 647 (1966).
  37. Liu XY, Bioinspiration: from nano to micro scales, Springer, New York (2012).