Issue
Korean Journal of Chemical Engineering,
Vol.37, No.5, 875-882, 2020
Synthesis of hollow magnetic carbon microbeads using iron oleate@alginate core-shell hydrogels and their application to magnetic separation of organic dye
The use of biopolymers obtained from natural resources as a carbon source has attracted much attention. In this study, we introduced a novel method for synthesis of hollow magnetic carbon microbeads (HMCMs) based on core-shell alginate hydrogel microbeads consisting of a hydrophobic iron-oleate core encapsulated in a shell of ionically cross-linked alginate hydrogel using the syringe pump with the fabricated double-layered syringe needle. This allows in-situ formation of magnetic particles and carbon walls simultaneously during carbonization. After surface passivation with a silica coating followed by direct carbonization led to in-situ formation of iron oxide particles via the thermal decomposition of the iron-oleate precursor in the core region and a carbon shell derived from the cross-linked alginate polymer during carbonization. The subsequent removal of the silica shell resulted in the formation of HMCMs with a unique surface wrinkle morphology and superparamagnetic property. HMCMs were applied to remove dye from the contaminated wastewater, and the dye-adsorbed HMCMs could be easily removed by an external magnetic field. The proposed synthesis of hollow carbon microbeads can be further optimized to control the size of core-shell microbeads and the components encapsulated in the core and shell, and hence will be useful for preparing diverse types of beads for various applications.
[References]
  1. Arami M, Limaee NY, Mahmoodi NM, Tabrizi NS, J. Colloid Interface Sci., 288(2), 371, 2005
  2. Robinson T, Chandran B, Nigam P, Water Res., 36, 2824, 2002
  3. Mohammadi M, Hassani AJ, Mohamed AR, Najafpour GD, J. Chem. Eng. Data, 55(12), 5777, 2010
  4. Liu H, Ren X, Chen L, J. Ind. Eng. Chem., 34, 278, 2016
  5. Yagub MT, Sen TK, Afroze S, Ang HM, Adv. Colloid Interface Sci., 209, 172, 2014
  6. Robinson T, McMullan G, Marchant R, Nigam P, Bioresour. Technol., 77(3), 247, 2001
  7. Crini G, Bioresour. Technol., 97(9), 1061, 2006
  8. Saleh TA, Ali I, J. Environ. Chem. Eng., 6, 5361, 2018
  9. Katheresan V, Kansedo J, Lau SY, J. Environ. Chem. Eng., 6, 4676, 2018
  10. San Miguel G, Lambert SD, Graham NJD, J. Chem. Technol. Biotechnol., 81(10), 1685, 2006
  11. Kim H, Fortunato ME, Xu H, Bang JH, Suslick KS, J. Phys. Chem. C, 115, 20481, 2011
  12. Wang Y, Zhang L, Wu Y, Zhong Y, Hu Y, Lou XW, Chem. Commun., 51, 6921, 2015
  13. Olivera S, Venkatesh K, Reddy N, Jayanna BK, Inamuddin, Asiri AM, Rtimi S, Muralidhara HB, Environ. Technol. Innovation, 12, 160, 2018
  14. Galan J, Rodriguez A, Gomez JM, Allen SJ, Walker GM, Chem. Eng. J., 219, 62, 2013
  15. Tosheva L, Parmentier J, Valtchev V, Vix-Guterl C, Patarin J, Carbon, 43, 2474, 2005
  16. Liu J, Yang T, Wang DW, Lu GQ, Zhao D, Qiao SZ, Nat. Commun., 4, 2798, 2013
  17. Li M, Wu Q, Wen M, Shi J, Nanoscale Res. Lett., 4, 1365, 2009
  18. Wang X, Jiang C, Hou B, Wang Y, Hao C, Wu J, Chemosphere, 206, 587, 2018
  19. Ding L, Olesik SV, Chem. Mater., 17, 2353, 2005
  20. Lu F, Huang C, You L, Wang J, Zhang Q, RSC Adv., 7, 23255, 2017
  21. Qian HS, Han FM, Zhang B, Guo YC, Yue J, Peng BX, Carbon, 42, 761, 2004
  22. Zhang T, Zhu C, Shi Y, Li Y, Zhu S, Zhang D, Mater. Lett., 205, 10, 2017
  23. Shoichet MS, Li RH, White ML, Winn SR, Biotechnol. Bioeng., 50, 374, 1995
  24. Morch YA, Donati I, Strand BL, Skjak-Braek G, Biomacromolecules, 7(5), 1471, 2006
  25. Barnett BP, Arepally A, Stuber M, Arifin DR, Kraitchman DL, Bulte JWM, Nat. Protocols, 6, 1142, 2011
  26. Kim J, Arifin DR, Muja N, Kim T, Gilad AA, Kim H, Arepally A, Hyeon T, Bulte JWM, Angew. Chem.-Int. Edit., 50, 2317, 2011
  27. Shin BY, Cha BG, Jeong JH, Kim J, ACS Appl. Mater. Interfaces, 9, 31372, 2017
  28. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 83, 195, 2018
  29. Raymundo-Pinero E, Leroux F, Beguin F, Adv. Mater., 18(14), 1877, 2006
  30. Lei Z, Zhai S, Lv J, Fan Y, An Q, Xiao Z, RSC Adv., 5, 77932, 2015
  31. Cho K, Shin BY, Park HK, Cha BG, Kim J, RSC Adv., 4, 21777, 2014
  32. Park J, An KJ, Hwang YS, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T, Nat. Mater., 3(12), 891, 2004
  33. Huang KS, Yang CH, Lin YS, Wang CY, Lu K, Chang YF, Wang YL, Drug Deliv. and Transl. Res., 1, 289 (2011).
  34. Guerretta F, Magnacca G, Franzoso F, Ivanchenko P, Nistico R, Mater. Lett., 234, 339, 2019
  35. Ross AB, Hall C, Anastasakis K, Westwood A, Jones JM, Crewe RJ, J. Anal. Appl. Pyrol., 91, 344, 2011
  36. Li DM, Chen LM, Yi XJ, Zhang XW, Ye NH, Bioresour. Technol., 101(18), 7131, 2010
  37. Soares JP, Santos JE, Chierice GO, Cavalheiro ETG, Ecletica Quimica, 29, 57, 2004
  38. Holzwarth U, Gibson N, Nat. Nanotechnol., 6(9), 534, 2011
  39. Bhattacharyya KG, Sengupta S, Sarma GK, Appl. Clay Sci., 99, 7, 2014
  40. Inyinbor AA, Adekola FA, Olatunji GA, S. Afr. J. Chem., 62, 218, 2016
  41. Chaudhary S, Sharma P, Renu, Kumar R, RSC Adv., 6, 62797, 2016
  42. Giri SK, Das NN, Pradhan GC, Colloids Surf. A: Physicochem. Eng. Asp., 389, 43, 2011
  43. Sinha A, Cha BG, Kim J, ACS Appl. Nano Mater., 1, 1940, 2018
  44. Santhi M, Kumar PE, Int. J. Innov. Res. Sci. Eng. Technol., 4, 497, 2015
  45. Pan X, Du Q, Zhou Y, Liu L, Xu G, Yan C, J. Nanosci. Nanotechnol., 18, 7231, 2018