Issue
Korean Journal of Chemical Engineering,
Vol.37, No.5, 839-849, 2020
Particle resolved CFD simulation on vapor-phase synthesis of vinyl acetate from ethylene in fixed-bed reactor
The synthesis of vinyl acetate (VAc) from ethylene is a strongly exothermic reaction that might easily cause catalyst deactivation and reduce selectivity of VAc. Research at the bed scale helps to improve the conversion of C2H4 and the selectivity of VAc. In this study, the discrete element method (DEM) was used to construct a fixed-bed structure model via simulating the filling process of catalyst particles in the reactor. The inlet section of a reaction tube was studied, and its length was 10 cm. The temperature distribution, and the effects of particles size, inlet velocity, inlet temperature and the feed ratio of C2H4 to O2 on the reaction process were studied. Simulated results show that the bed temperature gradually increased from the wall to the center, and the temperature gradient gradually decreased along the radial direction. The maximum temperature was 438.68 K and the temperature difference from the inlet temperature was 5.54 K. Comparing the composite particle packed bed with the single particle size packed bed, the composite packed bed has higher vinyl acetate selectivity. Increasing inlet velocity from 1.5m/s to 3.5m/s, the selectivity of vinyl acetate increased from 91.71% to 92.60%. Adding an inert gas to the feed gas can increase the oxygen concentration and reduce the explosion interval of C2H4, the conversion of C2H4 and the selectivity of vinyl acetate increased.
[References]
  1. Panda N, Yadav SA, Asian J. Chem., 8, 296, 2019
  2. Rase H, Hayes M, Platin Met. Rev., 45, 83, 2001
  3. Geng S, Haque MU, Oksman K, Compos. Sci. Technol., 126, 35, 2016
  4. Panova TV, Efimova AA, Efimov AV, Colloid Polym. Sci., 71, 1, 2019
  5. Caranton ARG, Dille J, Barreto J, Stavale F, Pinto JC, Schmal M, ChemCatChem, 10, 5256, 2018
  6. Han YF, Wang JH, Kumar D, Yan Z, Goodman DW, J. Catal., 232(2), 467, 2005
  7. Han YF, Kumar D, Sivadinarayana C, Goodman DW, J. Catal., 224(1), 60, 2004
  8. Dong XQ, Wang YC, Yu YZ, Zhang MH, Ind. Eng. Chem. Res., 57(22), 7363, 2018
  9. Motahari K, Atashi H, Fazlollahi F, Sarkari M, Jind Eng. Chem., 18, 266, 2012
  10. Motahari K, Rempel G, Lashkarara S, Ghaseminezhad K, Borumandnejad A, Hatami B, Can. J. Chem. Eng., 94(3), 506, 2016
  11. Calaza F, Stacchiola D, Neurock M, Tysoe WT, J. Am. Chem. Soc., 132(7), 2202, 2010
  12. Nakamura S, Yasui T, J. Catal., 54, 605, 1982
  13. Pham QL, Haldorai Y, Nguyen VH, Kang CK, Shim JJ, Korean J. Chem. Eng., 31(11), 2101, 2014
  14. Talebian A, Keshtkar AR, Moosavian MA, Korean J. Chem. Eng., 33(7), 2205, 2016
  15. Jafari SA, Jamali A, Korean J. Chem. Eng., 33(4), 1296, 2016
  16. Dixon AG, Nijemeisland M, Stitt EH, Adv. Chem. Eng., 31, 307, 2006
  17. Logtenberg SA, Dixon AG, Chem. Eng. Process., 37(1), 7, 1998
  18. Jiang PX, Xu RN, Gong W, Chem. Eng. Sci., 61(22), 7213, 2006
  19. Guardo A, Coussirat M, Larrayoz MA, Recasens F, Egusquiza E, Chem. Eng. Sci., 60(6), 1733, 2005
  20. Gunjal PR, Ranade VV, Chaudhari RV, AIChE J., 51(2), 365, 2005
  21. Atashi H, Sarkari M, Motahari K, Tabrizi FF, Fazlollahi F, J. Korean Chem. Soc., 55, 92, 2011
  22. Motahari K, Rempel G, Lashkarara S, Ghaseminezhad K, Borumandnejad A, Hatami B, Can. J. Chem. Eng., 94(3), 506, 2016
  23. Han YF, Kumar D, Goodman DW, J. Catal., 203, 353, 2005
  24. Partopour B, Dixon AG, AIChE J., 63(1), 87, 2017
  25. Partopour Behnam, Dixon Anthony G., Ind. Eng. Chem. Res., 55(27), 7296, 2016
  26. Dong Y, Keil FJ, Korup O, Rosowski F, Horn R, Chem. Eng. Sci., 142, 299, 2016
  27. Hong RY, Yang W, Zhuang YQ, Li HZ, Comput. A. Chem., 23, 481, 2006
  28. Partopour B, Dixon AG, AIChE J., 63(1), 87, 2017
  29. Wehinger GD, Kraume M, Berg V, Korup O, Mette K, Schlogl R, Behrens M, Horn R, AIChE J., 62(12), 4436, 2016
  30. Wehinger GD, Eppinger T, Kraume M, Chem. Eng. Sci., 122, 197, 2015
  31. Vollmari K, Oschmann T, Wirtz S, Kruggel-Emden H, Powder Technol., 271, 109, 2015
  32. Zhou XM, Duan YJ, Huai XL, Li XF, Particuology, 11, 715, 2012
  33. Tabib MV, Johansen ST, Amini S, Ind. Eng. Chem. Res., 52(34), 12041, 2013
  34. Dixon AG, Can. J. Chem. Eng., 66, 705, 1988
  35. Wehinger GD, Eppinger T, Kraume M, Chem. Eng. Sci., 122, 197, 2015
  36. Dixon AG, Nijemeisland M, Sititt EH, Chem. Eng. Sci., 48, 135, 2013
  37. Cheng SH, Chang H, Chen YH, Computational fluid dynamics-based multiobjective optimization for catalyst design, Philadelphia, PA, 13-16 July (2010).
  38. Zhao ZX, Dai QL, Wang SD, Lin BY, Chen GT, Chem. React. Eng. Technol., 2, 128, 1995