Issue
Korean Journal of Chemical Engineering,
Vol.37, No.5, 815-826, 2020
Modelling of batch biomethanation process for maximizing income based on values of consumed and produced gases
Economic estimation of an environmental-friendly biomethanation process based on economic values of consumed and produced gases would be a unique attitude. In this paper, time and space dependent concentration profiles of components involved in a batch process, designed for biomethanation, were predicted through a mass transfer modelling. The reaction terms used in the modeling required bio-kinetic parameters of μ max, m, kL, YC/L, YX/L, and YP/L which were globally optimized via a predefined algorithm using some experimental data as 0.0987 day-1, 0.1374 day-1, 1.5422mole m-3, -1.3636, -0.0183, -0.0908. Upon model verification, process income was calculated for a long-term scenario under a variety of factors and maximized through response surface methodology. The maximum income achieved was $-0.4/m3 bioreactor. A term carbon subsidy was considered in the income equation in order to find a break-even income for subsidy value of $363/ton CO2. Sensitivity analysis revealed that the amount of carbon subsidy directly influenced the selection of low or high levels of some process parameters to make the process profitable. In addition, it was found that pressure and liquid volume were the most important factors to achieve maximum income when $30 and $300/ton CO2 carbon subsidy were allocated to the process, respectively.
[References]
  1. Ampelli C, Perathoner S, Centi G, Philos. Trans. R. Soc. A, 373, 201401, 2015
  2. Steinlechner C, Junge H, Angew. Chem.-Int. Edit., 57, 44, 2018
  3. Olivier JG, Peters J, Trends in global CO2 and total greenhouse gas emissions, Report (2018).
  4. Dudley B, BP statistical review of world energy, Report (2018).
  5. Chai Q, Xiao Z, Lai KH, Zhou G, Int. J. Prod. Econ., 203, 311, 2018
  6. Naims H, Environ. Sci. Pollut. Res., 23, 22226, 2016
  7. Bailera M, Lisbona P, Romeo LM, Espatolero S, Renew. Sust. Energ. Rev., 69, 292, 2017
  8. Iaquaniello G, Setini S, Salladini A, De Falco M, Int. J. Hydrog. Energy, 43(36), 17069, 2018
  9. Squalli J, Energy, 127, 479, 2017
  10. Blanco H, Nijs W, Ruf J, Faaij A, Appl. Energy, 232, 323, 2018
  11. Kim JH, Chang WS, Pak D, Korean J. Chem. Eng., 32(10), 2067, 2015
  12. Inkeri E, Tynjala T, Laari A, Hyppanen T, Appl. Energy, 209, 95, 2018
  13. Ghaib K, Ben-Fares FZ, Renew. Sust. Energ. Rev., 81, 433, 2018
  14. Tarkowski R, Renew. Sust. Energ. Rev., 105, 86, 2019
  15. Savvas S, Donnelly J, Patterson T, Chong ZS, Esteves SR, Appl. Energy, 202, 238, 2017
  16. Biswas J, Chowdhury R, Bhattacharya P, in Industry interactive innovations in science, engineering and technology, Springer, P. Biswas and H. Chattopadhyay Eds., Springer, Singapore (2018).
  17. Diaz I, Perez C, Alfaro N, Fdz-Polanco F, Bioresour. Technol., 185, 246, 2015
  18. Merkle W, Baer K, Lindner J, Zielonka S, Ortloff F, Graf F, Kolb T, Jungbluth T, Lemmer A, Bioresour. Technol., 232, 72, 2017
  19. Strubing D, Huber B, Lebuhn M, Drewes JE, Koch K, Bioresour. Technol., 245, 1176, 2017
  20. Huang YK, Dehkordy FM, Li Y, Emadi S, Bagtzoglou A, Li BK, Chem. Eng. J., 334, 1383, 2018
  21. Bensmann A, Hanke-Rauschenbach R, Heyer R, Kohrs F, Benndorf D, Reichl U, Sundmacher K, Appl. Energy, 134, 413, 2014
  22. Leonzio G, Chem. Eng. J., 290, 490, 2016
  23. Leu JY, Lin YH, Chang FL, Chem. Eng. Res. Des., 89(9A), 1879, 2011
  24. Osfouri S, Azin R, Gas Process., 4, 14, 2016
  25. Hayduck W, Laudie H, AIChE J., 20, 611, 1974
  26. Fairbanks D, Wilke C, Ind. Eng. Chem., 42, 471, 1950
  27. Marrero TR, Mason EA, J. Phys. Chem. Ref. Data, 1, 3, 1972
  28. Weissman S, Dubro G, J. Chem. Phys., 54, 1881, 1971
  29. Chu T, Chappelear PS, Kobayashi R, J. Chem. Eng. Data, 19, 299, 1974
  30. Fernandez-Prini R, Alvarez JL, Harvey AH, J. Phys. Chem. Ref Data, 32, 903, 2003
  31. Luo G, Angelidaki I, Biotechnol. Bioeng., 109(11), 2729, 2012
  32. Zabranska J, Pokorna D, Biotechnol. Adv., 36, 707, 2018
  33. Owens J, Legan J, Fems Microbiol. Rev., 3, 419, 1987
  34. Cadogan SP, Maitland GC, Trusler JPM, J. Chem. Eng. Data, 59(2), 519, 2014
  35. Schmelzer JW. Zanotto ED, Fokin VM, J. Chem. Phys., 122, 074511, 2005
  36. Rosa MD, Energy Environ., 31, 60, 2018
  37. Glenk G, Reichelstein S, Nat. Energy, 4, 216, 2019