Issue
Korean Journal of Chemical Engineering,
Vol.37, No.5, 804-814, 2020
Effect of interfering ions on phosphate removal from aqueous media using magnesium oxide@ferric molybdate nanocomposite
The removal efficiency of phosphate ion from aqueous media using magnesium oxide/iron molybdate (MgO/Fe2(MoO4)3) nanocomposite was investigated. MgO nanoparticles were chemically modified by ferric molybdate. Then, the structure and morphology of the nanocomposite was completely investigated using different analyses such as SEM, EDX/Map, FTIR, XRD, TGA, BET, and TEM. The TEM analysis demonstrated that the particles in the mentioned nano-composite were on a nanoscale. BET analysis proved that the nanocomposite was mesoporous with mean pore size of 9.4 nm. The sorption outcomes demonstrated that the highest phosphate sorption yield was achieved at 98.38%, exhibiting remarkable sorption efficiency. Carbonate ions showed to have the highest interfering impact compared to sulfate and nitrate ions, since phosphate ion removal efficiency decreased significantly when carbonate and phosphate ions were simultaneously available in the solution. The thermodynamic studies demonstrated that the current sorption process was spontaneous, possible, and exothermic. The sorption equilibrium investigation showed that the Freundlich isotherm model can describe the adsorption of phosphate ion better than can the Langmuir model, and the maximum sorption capacity was obtained as 30.21mg/g. Additionally, the adsorbent was successfully regenerated four times and was able to perform the sorption and desorption process well.
[References]
  1. Kanagaraj J, Senthilvelan T, Panda RC, Aravindhan R, Mandal AB, Chem. Eng. Technol., 37(10), 1741, 2014
  2. Yoshida H, Galinada WA, AIChE J., 48(10), 2193, 2002
  3. Almeelbi T, Bezbaruah A, J. Nanopart. Res., 14, 900, 2012
  4. Axinte O, Volf I, Bulgariu L, Environ. Eng. Manag. J., 16, 625, 2017
  5. Habiby SR, Esmaeili H, Foroutan R, Sep. Sci. Technol. (2019).
  6. Liu RX, Guo JL, Tang HX, J. Colloid Interface Sci., 248(2), 268, 2002
  7. Cho SY, Choi DK, Korean J. Chem. Eng., 13(4), 409, 1996
  8. Patureau D, Helloin E, Rustrian E, Bouchez T, Delgenes JP, Moletta R, Water Res., 35, 189, 2001
  9. Adin A, Soffer Y, Aim RB, Water Sci. Technol., 38, 27, 1998
  10. Song M, Duan Z, Qin R, Xu X, Liu S, Song S, Zhang M, Li Y, Shi J, Korean J. Chem. Eng., 36(6), 869, 2019
  11. Namasivayam C, Sangeetha D, J. Colloid Interface Sci., 280(2), 359, 2004
  12. Cundy AB, Hopkinson L, Whitby RL, Sci. Total Environ., 400, 42, 2008
  13. Abshirini Y, Foroutan R, Esmaeili H, Mater. Res. Express, 6, 045607, 2019
  14. Abbasi S, Foroutan R, Esmaeili H, Esmaeilzadeh F, Desalin. Water Treat., 141, 269, 2019
  15. Tamjidi S, Esmaeili H, Chem. Eng. Technol., 42(3), 607, 2019
  16. House MP, Carley AF, Bowker M, J. Catal., 252(1), 88, 2007
  17. Esvandi Z, Foroutan R, Mirjalili M, Sorial GA, Ramavandi B, J. Polym. Environ., 27, 263, 2019
  18. Xiang J, Lin Q, Cheng S, Guo J, Yao X, Liu Q, Yin G, Liu D, Environ. Sci. Pollut. Res., 25, 14032, 2018
  19. Ashok A, Kennedy LJ, Vijaya JJ, Aruldoss, Clean Technol. Environ., 20, 1219, 2018
  20. Srirapu VKVP, Kumar A, Kumari N, Srivastava P, Singh RN, Int. J. Hydrog. Energy, 43(34), 16543, 2018
  21. Seevakan K, Manikandan A, Devendran P, Baykal A, Alagesan T, Ceram. Int., 44, 17735, 2018
  22. Hatami H, Fotovat A, Halajnia A, Appl. Clay Sci., 152, 333, 2018
  23. Jeon H, Kim DJ, Kim SJ, Kim JH, Fuel Process. Technol., 116, 325, 2013
  24. Feng J, Gao M, Zhang Z, Liu S, Zhao X, Ren Y, Lv Y, Fan ZJ, Colloid Interface Sci., 510, 69, 2018
  25. Alayat A, Echeverria E, Mcllroy DN, McDonald AG, Fuel Process. Technol., 177, 89, 2018
  26. Shafiee M, Foroutan R, Fouladi K, Ahmadlouydarab M, Ramavandi B, Sahebi S, Adv. Powder Technol., 30(3), 544, 2019
  27. Vahid BR, Haghighi M, Energy Conv. Manag., 126, 362, 2016
  28. Foroutan R, Oujifard A, Papari F, Esmaeili H, 3 Biotech., 9, 78, 2019
  29. Yue QY, Wang WY, Gao BY, Xu X, Zhang J, Li Q, Water Environ. Res., 82(4), 374, 2010
  30. Naushad M, Sharma G, Kumar A, Sharma S, Ghfar AA, Bhatnagar A, Stadler FJ, Khan MR, Int. J. Biol. Macromol., 106, 1, 2018
  31. Wang J, Liu Y, Hu P, Huang R, Environ. Prog. Sustain., 37, 267, 2018
  32. Tamjidi S, Esmaeili H, Moghadas BK, Mater. Res. Express, 6, 102004, 2019
  33. Sarvestani FS, Esmaeili H, Ramavandi B, 3 Biotech, 6, 251, 2016
  34. Siwek H, Bartkowiak A, Wlodarczyk M, Water, 11, 633, 2019
  35. Robalds A, Dreijalte L, Bikovens O, Klavins M, Desalin. Water Treat., 57, 13285, 2016
  36. Zeng L, Li X, Liu J, Water Res., 38, 1318, 2004
  37. Teimouri A, Esmaeili H, Foroutan R, Ramavandi B, Korean J. Chem. Eng., 35(2), 479, 2018
  38. Foroutan R, Mohammadi R, Farjadfard S, Esmaeili H, Saberi M, Sahebi S, Dobaradaran S, Ramavandi B, Environ. Sci. Pollut. Res., 26, 6336, 2019
  39. Dada AO, Olalekan AP, Olatunya AM, Dada OJIJC, IOSR-JAC, 3, 38, 2012
  40. Esmaeili H, Foroutan R, J. Dispersion Sci. Technol., 40, 990, 2019
  41. Kelm MAP, da Silva Junior MJ, de Barros Holanda SH, et al., Environ. Sci. Pollut. Res., 26, 28558, 2019
  42. You N, Wang XF, Li JY, Fan HT, Shen H, Zhang Q, J. Ind. Eng. Chem., 70, 346, 2019
  43. Liu Y, Xu H, Biochem. Eng. J., 35, 174, 2007