Issue
Korean Journal of Chemical Engineering,
Vol.37, No.5, 743-754, 2020
Design of vortex finder structure for decreasing the pressure drop of a cyclone separator
The structure of the vortex finder has an important influence on the pressure drop and separation efficiency of a cyclone, which mainly governs the separation process. In this paper, the traditional vortex finder is slotted on side wall and its bottom is closed, i.e., a slotted vortex finder. The impact of slotted vortex finder on the separation performance of a cyclone is explored by using numerical simulation and experimental validation. Specifically, the gas phase is studied by the Reynolds stress model (RSM), and the particle phase is simulated by the discrete phase model (DPM). The simulation results are in good agreement with the experimental results, revealing higher prediction accuracy. The results indicate that the slotted vortex finder can effectively suppress the generation of the downward swirling flow at the center of the vortex finder and decrease the turbulence intensity at the bottom of the vortex finder and the outer vortex, thereby decreasing the energy loss and increasing the separation efficiency. When the slot length is 0.2De, the slotted vortex finder can reduce the pressure drop by 143.33 Pa while increasing the collection efficiency by 5.51%.
[References]
  1. Hiraiwa Y, Oshitari T, Fukui K, Yamamoto T, Yoshida H, Sep. Purif. Technol., 118, 670, 2013
  2. Hoffmann AC, Stein LE, Gas cyclones and swirl tubes: principles, design and operation, 2nd Ed., Springer, Berlin (2008).
  3. Lim KS, Kim HS, Lee KW, J. Aerosol Sci., 35(6), 743, 2004
  4. Tan F, Karagoz I, Avci A, Chem. Eng. Commun., 203(9), 1216, 2016
  5. Raoufi A, Shams M, Farzaneh M, Ebrahimi R, Chem. Eng. Process., 47(1), 128, 2008
  6. Rafiee SE, Sadeghiazad MM, Aerospace Sci. Technol., 63, 110, 2017
  7. Gimbun J, Chuah TG, Fakhru'l-Razi A, Choong TSY, Chem. Eng. Process., 44(1), 7, 2005
  8. Griffiths WD, Boysan F, J. Aerosol Sci., 27(2), 281, 1996
  9. Hoekstra AJ, Derksen JJ, Van Den Akker HEA, Chem. Eng. Sci., 54(13-14), 2055, 1999
  10. Slack MD, Prasad RO, Bakker A, Boysan F, Chem. Eng. Res. Des., 78(8), 1098, 2000
  11. Wang LZ, Feng JM, Gao X, Peng XY, Chem. Eng. Res. Des., 117, 394, 2017
  12. Li Q, Xu WW, Wang JJ, Jin YH, Sep. Purif. Technol., 141, 53, 2015
  13. El-Batsh HM, Appl. Math. Model., 37, 5286, 2013
  14. Chen JH, Liu X, Sep. Purif. Technol., 73(2), 100, 2010
  15. Khairy E, Chris L, Comput. Fluids, 51, 48, 2011
  16. Brar LS, Sharma RP, Dwivedi R, Part. Sci. Technol., 33(1), 34, 2015
  17. Zhu YF, Lee KW, J. Aerosol Sci., 30(10), 1303, 1999
  18. Rafiee SE, Sadeghiazad MM, J. Marine Sci. Appl., 15, 388, 2016
  19. Gao X, Chen JF, Feng JM, Peng XY, Comput. Fluids, 92, 45, 2014
  20. Parvaz F, Hosseini SH, Ahmadi G, Elsayed K, Sep. Purif. Technol., 187, 1, 2017
  21. Pei BB, Yang L, Dong KJ, Jiang YC, Du XS, Wang B, Powder Technol., 313, 135, 2017
  22. Rafiee SE, Sadeghiazad MM, J. Marine Sci. Appl., 15, 157, 2016
  23. Lakhbir SB, Amit K, 2015 1st international conference on futuristic trends on computational anslysis and knowledge management, 180 (2015).
  24. Feng JA, Tang XQ, Wang WB, J. Shehezi Univ.: Natural Sci., 35, 52, 2017
  25. Wang JJ, Wang LZ, Liu CW, Chin. J. Process Eng., 5, 251, 2005
  26. Hoffmann AC, Stein LE, Bradshaw P, Appl. Mech. Rev., 56, B28, 2003
  27. Jin YH, Ji GQ, Cao QY, Wang JJ, J. China Univ. Petroleum, 32, 109, 2008
  28. Wang B, Yu AB, Chem. Eng. J., 135(1-2), 33, 2008
  29. Su YX, Zheng AG, Zhao BT, Powder Technol., 210(3), 293, 2011
  30. Bogodage SG, Leung AYT, Powder Technol., 286, 488, 2015