Issue
Korean Journal of Chemical Engineering,
Vol.37, No.2, 380-386, 2020
Polymerization of heterophasic propylene copolymer with Me2Si(2-Me-4-PhInd)2ZrCl2 supported on SiO2 and SiO2-MgCl2 carriers
Me2Si(2-Me-4-phInd)2ZrCl2 supported on SiO2/MgCl2 binary support was prepared for the preparation of heterophasic copolymer of polypropylene. The bi-support underwent surface treatment with various alkyl aluminum compounds such as trimethylaluminum (TMA), triethylaluminum (TEAL), and triisobutylaluminum (TIBA) before supporting the metallocene catalyst for 3 or 24 hours and were used for homopolymerization. It was notable that the generated SiO2/MgCl2 bi-support had lower surface area, pore volume and size as compared to the conventional SiO2. Impact polypropylene copolymers (IPCs) were obtained using two-step polymerization in one reactor with the presence of metallocene catalyst supported on SiO2. Propylene was polymerized in the reactor to produce the iPP matrix followed by polymerization of ethylene resulting to heterophasic material. It is apparent that the molecular weight of the polymer increased with longer PE polymerization time and as the polymerization time was more than 40 min, PP peak appeared near 147.9-149.2 °C, and a new peak emerged at 116.9-119.9 °C which could be attributed to the melting temperature of iPP crystallites and a less intense peak to either chains of ethylene-propylene copolymers. SEM images also confirmed that spherical PE particles were deeply embedded in the crystalline PP matrix and a large amount was produced as the polymerization time of the second stage ethylene polymerization was increased.
[References]
  1. Garcia MTP, Suarez I, Exposito MT, Coto B, Garcia-Munoz R, Eur. Polym. J., 93, 436, 2017
  2. Garcia RA, Coto B, Exposito MT, Suarez I, Fernandez-Fernandez A, Caveda S, Macromol. Res., 19(8), 778, 2011
  3. Pastor-Garcia MT, Suarez I, Exposito MT, Coto B, Garcia-Munoz R, Eur. Polym. J., 106, 156, 2018
  4. Botha L, van Reenen A, Eur. Polym. J., 49(8), 2202, 2013
  5. Kruczala K, Varghese B, Bokria JG, Schlick S, Macromolecules, 36(6), 1899, 2003
  6. Moballegh L, Hakim S, Morshedian J, Nekoomanesh M, J. Polym. Res., 22(5), 1, 2015
  7. Kakugo M, Sadatoshi H, Sakai J, Yokoyama M, Macromolecules, 22(7), 3172, 1989
  8. Urdampilleta I, Gonzalez A, Iruin JJ, de la Cal JC, Asua JM, Macromolecules, 38(7), 2795, 2005
  9. Soga K, Kaminaka M, Macromol. Rapid Commun., 13, 221, 1992
  10. Cho HS, Lee WY, Korean J. Chem. Eng., 19(4), 557, 2002
  11. Carino AC, Park SJ, Ko YS, Appl. Chem. Eng., 29(4), 461, 2018
  12. Cho HS, Choi KH, Choi DJ, Lee WY, Korean J. Chem. Eng., 17(2), 205, 2000
  13. Ko YG, Cho HS, Choi KH, Lee WY, Korean J. Chem. Eng., 16(5), 562, 1999
  14. Chung JS, Cho HS, Ko YG, Lee WYK, J. Mol. Catal. A-Chem., 144(1), 61, 1999
  15. Gauthier WJ, Lopez M, Rauscher DJ, Campbell DG, Kerr ME, Method for the preparation of metallocene catalysts, United States Patent US6777366B2 (2004).
  16. Garbassi F, Gila L, Proto A, J. Mol. Catal. A-Chem., 101, 199, 1995
  17. Silveira F, Santos de Sa D, Novais da Rocha Z, do Carmo M, Alves M, Zimnoch dos Santos JH, X-Ray Spectrom., 37, 615, 2008
  18. Atiqullah M, Faiz M, Akhtar N, Salim MA, Ahmed S, Khan JH, Surf. Interface Anal., 27, 728, 1999
  19. Jordan RF, Adv. Organomet. Chem., 32, 325, 1991
  20. Patthamasang S, Jongsomjit B, Praserthdam P, Molecules, 16, 8332, 2011
  21. Sensarma S, Sivaram S, Polym. Int., 51, 417, 2002
  22. Zhang HX, Lee YJ, Park JR, Lee DH, Yoon KB, Polym. Bull., 67(8), 1519, 2011
  23. Cho HS, Chung JS, Ko YG, Choi KH, Lee WY, Sci. Technol. Catal., 121, 481, 1999
  24. Fan Y, Zhang C, Xue Y, Nie W, Zhang X, Polym. J., 41, 1098, 2009
  25. Garcia RA, Coto B, Exposito MT, Suarez I, Fernandez-Fernandez A, Caveda S, Macromol. Res., 19(8), 778, 2011
  26. Huerta-Martinez BM, Ramirez-Vargas E, Medellin-Rodriguez FJ, Garcia RC, Eur. Polym. J., 41, 519, 2005
  27. Botha L, van Reenen A, Eur. Polym. J., 49, 2202, 2013