Issue
Korean Journal of Chemical Engineering,
Vol.37, No.2, 350-357, 2020
Innovative approach of in-situ fixed mode dual effect (photo-Fenton and photocatalysis) for ofloxacin degradation
Novel composite materials composed of clay, foundry sand (FS), and fly-ash (FA) have been employed to immobilize TiO2 for incorporating in-situ dual effect for the degradation of antibiotic ofloxacin. The in-situ generation of iron from the composite beads with surface active TiO2 induced the dual effect of photo-Fenton and photocatalysis. FA/FS/TiO2 beads illustrated the best results (92% removal) at optimized conditions in the batch reactor experiments. The increment in the rate constant along with a decrease in treatment time for the dual effect has proven the credentials of the in-situ dual effect. Synergy in first-order rate constant using dual process was 51% over the single processes of photo-Fenton and photocatalysis. After 35 recycles the viability of the composed beads was observed through SEM/ EDS, UV-DRS and FT-IR analysis, which further justified its use industrially. Estimation of nitrate, nitrite, and ammonia as its by-products was performed for the confirmation of mineralization. Generation of the intermediate products was also identified through GC-MS analysis, and a degradation pathway was proposed. Toxicity test confirming the nontoxic nature of the treated solution was performed on E. coli grown in Miller’s Luria Bertani Broth nutrient medium.
[References]
  1. Pardhe SP, Int. Res. J. Pharm., 9, 15, 2018
  2. Sui Q, Cao X, Lu S, Zhao W, Qiu Z, Yu G, Emerg. Contam., 1, 14, 2015
  3. Koopaei NN, Abdollahi M, DARU, J. Pharm. Sci., 25, 1, 2017
  4. Huber MM, Canonica S, Park GY, Von Gunten U, Environ. Sci. Technol., 37, 1016, 2003
  5. Rivera-Utrilla J, Sanchez-Polo M, Ferro-Garcia MA, Prados-Joya G, Ocampo-Perez R, Chemosphere, 93, 1268, 2013
  6. Miralles-Cuevas S, Oller I, Perez JAS, Malato S, Water Res., 64, 23, 2014
  7. Sharma J, Mishra IM, Kumar V, J. Environ. Manage., 156, 266, 2015
  8. Talwar S, Sangal V, Verma A, J. Photochem. Photobiol. C Photochem., 353, 263, 2018
  9. Talwar S, Sangal VK, Verma A, Kaur P, Garg A, Arab. J. Sci. Eng., 43, 6191, 2018
  10. Verma A, Toor AP, Prakash NT, Bansal P, Sangal VK, New J. Chem., 41, 6296, 2017
  11. Mozia S, Bro P, Przepi J, Tryba B, Morawski AW, J. Nanomaterials, 2012, 1, 2012
  12. Mukherjee D, Barghi S, Ray A, Processes, 2, 12, 2013
  13. Gadiyar C, Boruah B, Mascarenhas C, Shetty V, Int. J. Current. Eng. Technol., 84, 1, 2013
  14. Bansal P, Verma A, Talwar S, Chem. Eng. J., 349, 838, 2018
  15. Tamtam F, Mercier F, Le Bot B, Eurin J, Tuc Dinh Q, Clement M, Chevreuil M, Sci. Total Environ., 393, 84, 2008
  16. Gao L, Shi Y, Li W, Niu H, Liu J, Cai Y, Chemosphere, 86, 665, 2012
  17. Verma A, Prakash NT, Toor AP, Chemosphere, 109, 7, 2014
  18. APHA, Am. Public Heal. Assoc. Washington, DC, USA (2012).
  19. Bokare AD, Choi W, J. Hazard. Mater., 275, 121, 2014
  20. Toor AP, Verma A, Jotshi CK, Bajpai PK, Singh V, Dyes Pigment., 68, 53, 2006
  21. Bansal P, Verma A, Mater. Des., 125, 135, 2017
  22. Bansal P, Verma A, J. Photochem. Photobiol. A-Chem., 342, 131, 2017
  23. Kannaiyan D, Kochuveedu ST, Jang YH, Jang YJ, Lee JY, Lee J, Lee J, Kim J, Kim DH, Polymers, 2, 490, 2010
  24. Dagher S, Soliman A, Ziout A, Tit N, Hilal-Alnaqbi A, Khashan S, Alnaimat F, Qudeiri JA, Mater. Res. Express., 5, 1, 2018
  25. APHA, AWWA, and WEF, Stand. Methods Exam. Water Wastewater (2005).
  26. APHA/WEF/AWWA, Stand. Methods Exam. Water Wastewater (2018).
  27. APHA, in Stand. Methods Exam. Water Wastewater (2012).
  28. Mirzaei A, Chen Z, Haghighat F, Yerushalmi L, Appl. Catal. B: Environ., 242, 337, 2019
  29. Sagi G, Bezsenyi A, Kovacs K, Klatyik S, Darvas B, Szekacs A, Mohacsi-Farkas C, Takacs E, Wojnarovits L, Sci. Total Environ., 622-623, 1009, 2018