Issue
Korean Journal of Chemical Engineering,
Vol.37, No.2, 231-239, 2020
Selection of efficient absorbent for CO2 capture from gases containing low CO2
Amine-based absorption processes are widely used in natural gas processing, but recently they have been considered for CO2 capture from flue gas emitted from thermal power plants. The main issue of amine used in the CO2 capture process is the high cost of solvent regeneration. So, this issue can be solved by using efficient amine absorbent. The amine type absorbents employed in the experimentation were an aqueous blend of 2-(Diethylamino)ethanol (DEEA) with different types of diamine activators such as piperazine (PZ), 2-(2-aminoethylamino)ethanol (AEEA), hexamethylenediamine (HMDA), ethylenediamine (EDA), and 3-(Dimethylamino)-1-propylamine (DMAPA). An absorption experiment was performed to evaluate the CO2 absorption performance in terms of CO2 loading, absorption capacity, and absorption rate. The experiment was performed to assess the CO2 desorption performance in terms of desorption capacity, desorption rate, cyclic capacity, and regeneration efficiency. From the results of absorptiondesorption and comparison with benchmark amine absorbent MEA, the aqueous blend of DEEA and HMDA indicated the best performance for CO2 capture applications among all the tested amine blends.
[References]
  1. IEA, World Energy Outlook 2016, International Energy Agency, Paris, France (2016).
  2. Zaman M, Lee JH, Korean J. Chem. Eng., 30(8), 1497, 2013
  3. Xu YX, Isom L, Hanna MA, Bioresour. Technol., 101(10), 3311, 2010
  4. Ciferno JP, Fout TE, Jones AP, Murphy JT, Chem. Eng. Prog., 105(4), 33, 2009
  5. Rao AB, Rubin ES, Environ. Sci. Technol., 36, 4467, 2002
  6. Xu B, Gao H, Luo X, Liao H, Liang Z, Int. J. Greenh. Gas Control, 51, 11, 2016
  7. Kohl AL, Nielsen RB, Gas purification, 5th Ed., Gulf Publishing:Houston, TX (1997).
  8. Xiao M, Liu HL, Gao HX, Liang ZW, J. Chem. Thermodyn., 122, 170, 2018
  9. Nouacer A, Belaribi FB, Mokbel I, Jose J, J. Mol. Liq., 190, 6, 2014
  10. Ling H, Gao HX, Liang ZW, Chem. Eng. J., 355, 369, 2019
  11. Narku-Tetteh J, Muchan P, Idem R, Sep. Purif. Technol., 187, 453, 2017
  12. Wilk A, Wieclaw-Solny L, Tatarczuk A, Krotki A, Spietz T, Chwoła T, Korean J. Chem. Eng., 34(8), 2275, 2017
  13. Yu B, Yu H, Li KK, Yang Q, Zhang R, Li LC, Chen ZL, Appl. Energy, 208, 1308, 2017
  14. Muchan P, Narku-Tetteh J, Saiwan C, Idem R, Supap T, Sep. Purif. Technol., 184, 128, 2017
  15. Choi JH, Kim YE, Nam SC, Yun SH, Yoon YI, Lee JH, Korean J. Chem. Eng., 33(11), 3222, 2016
  16. Liu S, Gao HX, He C, Liang ZW, Appl. Energy, 233, 443, 2019
  17. Rochelle GT, Science, 325, 1652, 2009
  18. Ma'mun S, Svendsen HF, Hoff KA, Juliussen O, Energy Conv. Manag., 48(1), 251, 2007
  19. Dawodu OF, Meisen A, Can. J. Chem. Eng., 74, 960, 2010
  20. Vega F, Sanna A, Navarrete B, Maroto-Valer MM, Cortes VJ, Greenh. Gases Sci. Technol., 4, 707, 2014
  21. Gao HX, Wu ZY, Liu H, Luo X, Liang ZW, Energy Fuels, 31(12), 13883, 2017
  22. Chakravarty T, Phukan UK, Weiland RH, Chem. Eng. Prog., 4, 32, 1985
  23. Ramachandran N, Aboudheir A, Idem R, Tontiwachwuthikul P, Ind. Eng. Chem. Res., 45(8), 2608, 2006
  24. Sema T, Naami A, Fu KY, Edali M, Liu HL, Shi HC, Liang ZW, Idem R, Tontiwachwuthikul P, Chem. Eng. J., 209, 501, 2012
  25. Benamor A, Al-Marri MJ, Int. J. Chem. Eng. Appl., 5, 4, 2014
  26. Mandal BP, Bandyopadhyay SS, Chem. Eng. Sci., 61(16), 5440, 2006
  27. Xiao J, Li CW, Li MH, Chem. Eng. Sci., 55(1), 161, 2000
  28. Mandala BP, Biswas AK, Bandyopadhyay SS, Chem. Eng. Sci., 58(18), 4137, 2003
  29. Fu D, Hao H, Liu F, J. Mol. Liq., 188, 37, 2013
  30. Chowdhury FA, Yamada H, Higashii T, Goto K, Onoda M, Ind. Eng. Chem. Res., 52(24), 8323, 2013
  31. Vaidya PD, Kenig EY, Chem. Eng. Sci., 62(24), 7344, 2007
  32. Vaidya PD, Kenig EY, Chem. Eng. Technol., 32(4), 556, 2009
  33. Aronu UE, Svendsen HF, Hoff KA, Juliussen O, Energy Procedia, 1, 1051, 2009
  34. Fu D, Wang LM, Mi CL, Zhang P, J. Chem. Thermodyn., 101, 123, 2016
  35. Kim I, Svendsen HF, Int. J. Greenh. Gas Control, 5, 390, 2011
  36. Liebenthal U, Pinto DDD, Monteiro JGMS, Svendsen HF, Kather A, Energy Procedia, 37, 1844, 2013
  37. Xu ZC, Wang SJ, Chen CH, Ind. Eng. Chem. Res., 52(29), 9790, 2013
  38. Kumar S, Mondal MK, J. Chem. Eng. Data, 63(5), 1163, 2018
  39. Kumar S, Mondal MK, Korean J. Chem. Eng., 35(6), 1335, 2018
  40. Gao HX, Xu B, Liu HL, Liang ZW, Energy Fuels, 30(9), 7481, 2016
  41. Shen Y, Jiang CK, Zhang SH, Chen J, Wang LD, Chen JM, Appl. Energy, 230, 726, 2018
  42. Zhang S, Du M, Shao P, Wang L, Ye J, Chen J, Chen J, Environ. Sci. Technol., 52, 12708, 2018
  43. Zhang S, Shen Y, Shao P, Chen J, Wang L, Environ. Sci. Technol., 52, 3660, 2018
  44. Ye J, Jiang C, Chen H, Shen Y, Zhang S, Wang L, Chen J, Environ. Sci. Technol., 53, 4470, 2019
  45. Zhang SH, Shen Y, Wang LD, Chen JM, Lu YQ, Appl. Energy, 239, 876, 2019
  46. Budzianowski WM, Int. J. Global Warming, 7(2), 184, 2015
  47. Sutar PN, Vaidya PD, Kenig EY, Chem. Eng. Sci., 100, 234, 2013
  48. Horwitz W, Official methods of analysis of the association of official analytical chemists 13th Ed., Benjamin Franklin Station, Washington, USA (1980).
  49. Gao HX, Wu ZY, Liu H, Luo X, Liang ZW, Energy Fuels, 31(12), 13883, 2017
  50. Lee JI, Otto FD, Mather AE, J. Appl. Chem. Biotechnol., 26, 541, 1976
  51. Shen KP, Li MH, J. Chem. Eng. Data, 37, 96, 1992
  52. Song JH, Yoon JH, Lee H, Lee KH, J. Chem. Eng. Data, 41(3), 497, 1996
  53. Shen SF, Yang YN, Wang Y, Ren SF, Han JZ, Chen AB, Fluid Phase Equilib., 399, 40, 2015
  54. Du Y, Yuan Y, Rochelle GT, Chem. Eng. Sci., 155, 397, 2016
  55. Singh P, Versteeg GF, Process Saf. Environ. Protect., 86(B5), 347, 2008