Issue
Korean Journal of Chemical Engineering,
Vol.37, No.1, 151-158, 2020
Gas hydrate formation by allyl alcohol and CH4: Spectroscopic and thermodynamic analysis
We discovered a new structure II (sII) hydrate forming agent, allyl alcohol (AA), in the presence of methane (CH4) for the first time, and characterized the crystal structure, guest distribution, and phase equilibria of the (AA+CH4) hydrate. Using solid-state 13C NMR and Raman spectroscopy, the crystal structure of the (AA+CH4) hydrate was confirmed to be a sII hydrate, and the CH4 molecule was found to be encapsulated in both the large and small cages of the sII hydrate. In addition, AA was found to be included in the large cages of the sII hydrate in the Gauche-Gauche form based on the measured- and calculated-NMR spectra. Notably, we investigated the free OH signal of AA in the Raman spectra to determine whether hydrogen bonding occurred between host and guest molecules; however, we could not determine whether the existence of the free OH signal was consistent with this host-guest interaction. To clearly identify the crystal structure and possible host-guest interactions, a high-resolution powder X-ray diffraction (HRPD) pattern of our (AA+CH4) hydrate sample was analyzed using Rietveld analysis with the direct space method. The crystal structure of the (AA+CH4) hydrate was assigned as the cubic Fd3m structure with a lattice constant of 17.1455 A. In particular, the shortest distance between the AA molecule in the hydrate cages and an oxygen atom in the host water was estimated to be 2.55 A; thus, we concluded that the hydroxyl group of the AA molecule was hydrogen-bonded to the host water framework. Finally, we measured the phase equilibrium conditions of the binary (AA+CH4) hydrate and found that the equilibrium pressure conditions of the binary (AA+CH4) hydrate were slightly higher than those of the pure CH4 hydrate.
[References]
  1. Sloan ED, Koh CA, Clathrate Hydrates of Natural Gases, 3rd Ed. CRC Press Boca Raton (2008).
  2. Sloan ED, Nature, 426, 353, 2003
  3. Cha M, Shin K, Kim J, Chang D, Seo Y, Lee H, Kang SP, Chem. Eng. Sci., 99, 184, 2013
  4. Mimachi H, Takeya S, Yoneyama A, Hyodo K, Takeda T, Gotoh Y, Murayama T, Chem. Eng. Sci., 118, 208, 2014
  5. Veluswamy HP, Kumar A, Seo Y, Lee JD, Linga P, Appl. Energy, 216, 262, 2018
  6. Aman ZM, Brown EP, Sloan ED, Sum AK, Koh CA, Phys. Chem. Chem. Phys., 13(44), 19796, 2011
  7. Seo YT, Kang SP, Lee H, Fluid Phase Equilib., 189, 99, 2001
  8. Seo Y, Kang SP, Lee J, Seol J, Lee H, J. Chem. Eng. Data, 56(5), 2316, 2011
  9. Jin Y, Kida M, Nagao J, J. Phys. Chem. C, 119(17), 9069, 2015
  10. Muromachi S, Nakajima T, Ohmura R, Mori YH, Fluid Phase Equilib., 305(2), 145, 2011
  11. Shin K, Cha M, Lee W, Kim H, Jung Y, Dho J, Kim J, Lee H, J. Am. Chem. Soc., 133(50), 20399, 2011
  12. Florusse LJ, Peters CJ, Schoonman J, Hester KC, Koh CA, Dec SF, Marsh KN, Sloan ED, Science, 306(5695), 469, 2004
  13. Lokshin KA, Zhao YS, He DW, Mao W, Mao HK, Hemley RJ, Lobanov MW, Greenblatt M, Abstr. Pap. Am. Chem. S, 229, U589, 2005
  14. Wang WX, Bray CL, Adams DJ, Cooper AI, J. Am. Chem. Soc., 130(35), 11608, 2008
  15. Daitoku T, Utaka Y, Appl. Energy, 87(8), 2682, 2010
  16. Kim NJ, Lee JH, Cho YS, Chun W, Energy, 35(6), 2717, 2010
  17. Kiran BS, Sowjanya K, Prasad PSR, Yoon JH, Oil Gas Sci. Technol., 74, 12, 2019
  18. Chong ZR, He TB, Babu P, Zheng JN, Linga P, Desalination, 463, 69, 2019
  19. Obrey SJ, Currier RP, Jebrail FF, Le LA, Martinez RJ, Sedillo MA, Yang DL, Tam S, Deppe G, Lee A, Spencer DF, Abstr. Pap. Am. Chem. S, 231, INOR23, 2006
  20. Park J, Seo YT, Lee JW, Lee H, Catal. Today, 115(1-4), 279, 2006
  21. Park Y, Kim DY, Lee JW, Huh DG, Park KP, Lee J, Lee H, Proc. Natl. Acad. Sci. USA, 103, 12690, 2006
  22. Lee HJ, Lee JD, Kim YD, Kor. J. Mater. Res., 18(12), 650, 2008
  23. Yang YJ, Shin D, Choi S, Woo Y, Lee JW, Kim D, Shin HY, Cha M, Yoon JH, Environ. Sci. Technol., 51(6), 3550, 2017
  24. Koh DY, Kang H, Kim DO, Park J, Cha M, Lee H, Chemsuschem., 5(8), 1443, 2012
  25. Shin K, Park Y, Cha MJ, Park KP, Huh DG, Lee J, Kim SJ, Lee H, Energy Fuels, 22(5), 3160, 2008
  26. Farhadi A, Mohebbi V, Int. J. Hydrog. Energy, 42(31), 19967, 2017
  27. Youn Y, Cha M, Kwon M, Park J, Seo Y, Lee H, Korean J. Chem. Eng., 33(5), 1712, 2016
  28. Seo SD, Hong SY, Sum AK, Lee KH, Lee JD, Lee BR, Chem. Eng. J., 370, 980, 2019
  29. Choi W, Lee Y, Mok J, Lee S, Lee JD, Seo Y, Chem. Eng. J., 358, 598, 2019
  30. Lee H, Ryu H, Lim JH, Kim JO, Lee JD, Kim S, Desalin Water Treat., 57(19), 9009, 2016
  31. Kang KC, Linga P, Park KN, Choi SJ, Lee JD, Desalination, 353, 84, 2014
  32. Cha JH, Seol Y, Acs Sustain. Chem. Eng., 1(10), 1218, 2013
  33. Park KN, Hong SY, Lee JW, Kang KC, Lee YC, Ha MG, Lee JD, Desalination, 274(1-3), 91, 2011
  34. Cha M, Shin K, Seo Y, Shin JY, Kang SP, J. Phys. Chem. A, 117(51), 13988, 2013
  35. Cha MJ, Baek S, Lee H, Lee JW, Rsc Adv., 4(50), 26176, 2014
  36. Cha MJ, Baek S, Morris J, Lee JW, Chem-Asian J., 9(1), 261, 2014
  37. Cha MJ, Couzis A, Lee JW, Langmuir, 29(19), 5793, 2013
  38. Cha MJ, Hu Y, Sum AK, Fluid Phase Equilib., 413, 2, 2016
  39. Cha MJ, Lee H, Lee JW, J. Phys. Chem. C, 117(45), 23515, 2013
  40. Cha M, Shin K, Lee H, J. Phys. Chem. B, 113(31), 10562, 2009
  41. Alavi S, Shin K, Ripmeester JA, J. Chem. Eng. Data, 60(2), 389, 2015
  42. Shin K, Udachin KA, Moudrakovski IL, Leek DM, Alavi S, Ratcliffe CI, Ripmeester JA, Proc. Natl. Acad. Sci. USA, 110(21), 8437, 2013
  43. Lee JW, Kang SP, J. Phys. Chem. B, 116(1), 332, 2012
  44. Alavi S, Takeya S, Ohmura R, Woo TK, Ripmeester JA, J. Chem. Phys., 133(7), 074505, 2010
  45. Cha MJ, Shin KC, Lee H, Korean J. Chem. Eng., 34(9), 2514, 2017
  46. Ohmura R, Takeya S, Uchida T, Ikeda IY, Ebinuma T, Narita H, Fluid Phase Equilib., 221(1-2), 151, 2004
  47. Sinehbaghizadeh S, Javanmardi J, Mohammadi AH, J. Chem. Thermodyn., 125, 64, 2018
  48. Youn Y, Cha M, Lee H, ChemphysChem, 16(13), 2876, 2015
  49. Zhurko FV, Manakov AY, Kosyakov VI, Chem. Eng. Sci., 65(2), 900, 2010
  50. Udachin K, Alavi S, Ripmeester JA, J. Chem. Phys., 134(12), 054702, 2011
  51. Imai M, Oto Y, Nitta S, Takeya S, Ohmura R, J. Chem. Thermodyn., 47, 17, 2012
  52. Imai S, Miyake K, Ohmura R, Mori YH, J. Chem. Eng. Data, 52(3), 1056, 2007
  53. Ohmura R, Takeya S, Uchida T, Ebinuma T, Ind. Eng. Chem. Res., 43(16), 4964, 2004
  54. Takeya S, Udachin KA, Moudrakovski IL, Susilo R, Ripmeester JA, J. Am. Chem. Soc., 132(2), 524, 2010
  55. Rodriguez-Carvajal J, Phys. B: Condens. Matter, 192, 55, 1993
  56. Favre-Nicolin V, Cerny R, J. Appl. Crystallogr., 35, 734, 2002
  57. Ahn YH, Lee B, Shin K, Crystals, 8(8), 328, 2018
  58. Park KH, Jeong D, Yoon JH, Cha M, Fluid Phase Equilib., 493, 43, 209
  59. Shin K, Park Y, Hong JH, Lee H, Korean J. Chem. Eng., 24(5), 843, 2007
  60. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, et al., Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford CT, 2004).
  61. Shin K, Moudrakovski IL, Ratcliffe CI, Ripmeester JA, Angew. Chem.-Int. Edit., 56(22), 6171, 2017
  62. Ahn YH, Youn Y, Cha M, Lee H, Rsc Adv., 7(20), 12359, 2017