Issue
Korean Journal of Chemical Engineering,
Vol.36, No.10, 1746-1751, 2019
Photothermal performance of plasmonic patch with gold nanoparticles embedded on polymer matrix
Under light irradiation, gold nanoparticles (AuNPs) reveal the surface plasmon feature, i.e., the occurrence of the collective excitation of the free electrons of NPs. Plasmon relaxation, as well as excitation, induced by light absorption, could be used to increase the local temperature via conversion of light to heat. This photothermal effect can be enhanced by control of the morphology and structure of NPs in the near-infrared (NIR) region. Recently, the use of an NP-composited polymer as a heating patch with a good photothermal performance was suggested for biomedical applications. Herein, AuNPs embedded on polydimethylsiloxane (PDMS) films (Au-PDMS) were successfully prepared with an in-situ synthesis method without a reducing agent. Their photothermal performance was measured with an IR camera under 808 nm NIR irradiation, and a mechanical stretching test for the Au-PDMS films was conducted to investigate the effect of the AuNPs’ density on the photothermal performance. The surface temperature of the films, which reached 120 °C within 1min, is also adjustable with mechanical stretching (strain change). This is due to the decrease of the AuNPs density with widening interparticle distance between them.
[References]
  1. Umh HN, Kim Y, Korean J. Chem. Eng., 30(2), 482, 2013
  2. Fasciani C, Alejo CJB, Grenier M, Netto-Ferreira JC, Scaiano JC, Org. Lett., 13, 204, 2011
  3. Liao H, Bebl CL, Hafner JH, Nanomed., 1, 201, 2006
  4. Zhang X, Ke X, Du A, Zhu H, Sci. Rep., 4, 3805, 2014
  5. Gan QQ, Bartoli FJ, Kafafi ZH, Adv. Mater., 25(17), 2385, 2013
  6. Siahpoush V, Ahmadi-kandjani S, Nikniazi A, Opt. Commun., 420, 52, 2018
  7. Hu Y, Liu X, Cai Z, Zhang H, Gao H, He W, Wu P, Cai C, Zhu JJ, Yan Z, Chem. Mater., 31, 471, 2019
  8. Wu P, Deng D, Gao J, Cai C, ACS Appl. Mater. Interfaces, 8, 10243, 2016
  9. Wang F, Li CH, Chen HJ, Jiang RB, Sun LD, Li Q, Wang JF, Yu JC, Yan CH, J. Am. Chem. Soc., 135(15), 5588, 2013
  10. Leduc C, Si S, Gautier J, Soto-Ribeiro M, Wehrle-Haller B, Gautreau A, Giannone G, Cognet L, Lounis B, Nano Lett., 13, 1489, 2013
  11. Toroghi S, Kik PG, Phys. Rev. B, 90, 205414, 2014
  12. Qiu D, Gu L, Sun XL, Ren DH, Gu ZG, Li Z, RSC Adv., 4, 61313, 2014
  13. Hu M, Chen J, Li ZY, Au L, Hartland GV, Li X, Marquez M, Xia Y, Chem. Soc. Rev., 35, 1084, 2006
  14. Ge J, Sun L, Zhang FR, Zhang Y, Shi LA, Zhao HY, Zhu HW, Jiang HL, Yu SH, Adv. Mater., 28(4), 722, 2016
  15. SadAbadi H, Badilescu S, Packirisamy M, Wuthrich R, J. Biomed. Nanotechnol., 8, 1, 2012
  16. Luan J, Morrissey JJ, Wang Z, Derami HG, Liu KK, Cao S, Jiang Q, Wang C, Kharasch ED, Naik RR, Singamaneni S, Light Sci. Appl., 7, 29, 2018
  17. Zhang Q, Xu JJ, Liu Y, Chen HY, Lab Chip, 8, 352, 2008
  18. Cataldi U, Caputo R, Kurylyak Y, Klein G, Chekini M, Umeton C, Burgi T, J. Mater. Chem. C, 2, 7927, 2014
  19. Gupta R, Nagamanasa HK, Ganapathy R, Kulkarni GU, Bull. Mater. Sci., 38, 817, 2015
  20. Goyal A, Kumar A, Patra PK, Mahendra S, Tabatabaei S, Alvarez PJJ, John G, Ajayan PM, Macromol. Rapid Commun., 30(13), 1116, 2009
  21. Alkilany AM, Murphy CJ, J. Nanopart. Res., 12, 2313, 2010
  22. Dunklin JR, Forcherio GT, Berry KR, Roper DK, J. Phys. Chem. C, 118, 7523, 2014
  23. Bedogni E, Kaneko S, Fujii S, Kiguchi M, Jap. J. App. Phys., 56, 035201, 2017
  24. Lim MC, Park K, Kim SH, Ok G, Choi SW, Colloids Surf. A: Physicochem. Eng. Asp., 529, 916, 2017
  25. Novo C, Funston AM, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P, J. Phys. Chem. C, 112, 3, 2008
  26. Doyen M, Goole J, Bartik K, Bruylants G, J. Colloid Interface Sci., 464, 160, 2016
  27. Miyako E, Hosokawa C, Kojima M, Yudasaka M, Funahashi R, Oishi I, Hagihara Y, Shichiri M, Takashima M, Nishio K, Yoshida Y, Angew. Chem.-Int. Edit., 50, 12266, 2011