Issue
Korean Journal of Chemical Engineering,
Vol.36, No.10, 1732-1739, 2019
Effect of temperature on the performance of aqueous redox flow battery using carboxylic acid functionalized alloxazine and ferrocyanide redox couple
Carboxylic acid functionalized alloxazine (alloxazine-COOH) and ferrocyanide are utilized as active species for aqueous redox flow battery (ARFB), and the effect of operating temperature on the performance of ARFB was investigated. Based on electrochemical characterization, although ferrocyanide is in a quasi-reversible state at room temperature, the state becomes irreversible as temperature increases. By the use of carbon felt (CF) containing carbonoxygen functional groups, the activity of ferrocyanide is enhanced without side effect, such as irreversible redox reactivity. This is because the hydrophilic (charge-dipole) interaction between dipole groups (hydroxyl and carbonyl groups) onto CF and ferricyanide ions promotes the oxidation reaction of ferricyanide. Though alloxazine-COOH coated on glassy carbon electrode shows irreversible state compared to ferrocyanide as temperature increases, the activity of alloxazine- COOH is also enhanced by using the hydrophilic group doped CF. To prove whether the redox reactivity of the two active species is improved with increase in temperature, the performance of ARFBs using them was evaluated in the different temperature conditions. When the temperature of both anolyte and catholyte is 45 °C, average discharge capacity and state of charge are 24 Ahr·L-1 and 90%, and the values are reduced to 23 Ahr·L-1 and 86% in ARFB of only catholyte heating, 22 Ahr·L-1 and 82% in ARFB of only anolyte heating and 21.3 Ahr·L-1 and 80% with no heating. Based on that, it is speculated that the operation temperature can be a factor in determining the performance of ARFB.
[References]
  1. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y, Prog. Nat. Sci., 19, 291, 2009
  2. Lee KJ, Koomson S, Lee CG, Korean J. Chem. Eng., 36(4), 600, 2019
  3. Ghosh S, Jeong SM, Polaki SR, Korean J. Chem. Eng., 35(7), 1389, 2018
  4. Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916, 2017
  5. Ryu JH, Korean J. Chem. Eng., 35(2), 328, 2018
  6. Christwardana M, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 3009, 2017
  7. Christwardana M, Chung YJ, Tannia DC, Kwon YC, Korean J. Chem. Eng., 35(12), 2421, 2018
  8. Wang W, Luo QT, Li B, Wei XL, Li LY, Yang ZG, Adv. Funct. Mater., 23(8), 970, 2013
  9. Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M, Electrochim. Acta, 101, 27, 2013
  10. Kaneko H, Nozaki K, Wada Y, Aoki T, Negishi A, Kamimoto M, Electrochim. Acta, 36, 1191, 1991
  11. Jung M, Lee W, Krishnan NN, Kim S, Gupta G, Komsiyska L, Harms C, Kwon Y, Henkensmeier D, Appl. Surf. Sci., 450, 301, 2018
  12. Noh C, Jung M, Henkensmeier D, Nam SW, Kwon Y, ACS Appl. Mater. Interfaces, 9, 36799, 2017
  13. Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187, 2018
  14. Jung HY, Cho MS, Sadhasivam T, Kim JY, Roh SH, Kwon Y, Solid State Ion., 324, 69, 2018
  15. Struzynska-Piron I, Jung M, Maljusch A, Conradi O, Kim S, Janag JH, Kim HJ, Kwon Y, Nam SW, Henkensmeier D, Eur. Polym. J., 96, 383, 2017
  16. Jung HY, Jeong S, Kwon Y, Electrochem. Soc., 163, A5090, 2016
  17. Oriji G, Katayama Y, Miura T, Electrochim. Acta, 49(19), 3091, 2004
  18. Jeong S, Kim LH, Kwon Y, Kim S, Korean J. Chem. Eng., 31(11), 2081, 2014
  19. Wang W, Nie Z, Chen B, Chen F, Luo Q, Wei X, Xia GG, Skyllas-Kazacos M, Li L, Yang Z, Adv. Eng. Mater., 2, 487, 2012
  20. Chakrabarti MH, Dryfe RAW, Roberts EPL, Electrochim. Acta, 52(5), 2189, 2007
  21. Lopez-Atalaya M, Codina G, Perez JR, Vazquez JL, Aldaz A, J. Power Sources, 39, 147, 1992
  22. Zhang MQ, Moore M, Watson JS, Zawodzinski TA, Counce RM, J. Electrochem. Soc., 159(8), A1183, 2012
  23. Noh C, Moon S, Chung Y, Kwon Y, J. Mater. Chem. A, 5, 21334, 2017
  24. Noh C, Lee CS, Chi WS, Chung Y, Kim JH, Kwon Y, J. Electrochem. Soc., 165(7), A1388, 2018
  25. Li B, Gu M, Nie Z, Shao Y, Luo Q, Wei X, Li X, Xiao J, Wang C, Sprenkle V, Wang W, Nano Lett., 13, 1330, 2013
  26. Suarez DJ, Gonzalez Z, Blanco C, Granda M, Menendez R, Santamaria R, ChemSusChem, 7, 914, 2014
  27. Gonzalez Z, Sanchez A, Blanco C, Granda M, Menendez R, Santamaria R, Electrochem. Commun., 13, 1379, 2011
  28. Yang B, Hoober-Burkhardt L, Wang F, Prakash GKS, Narayanan SR, J. Electrochem. Soc., 161(9), A1371, 2014
  29. Lin K, Gomez-Bombarelli R, Beh ES, Tong L, Chen Q, Valle A, Aspuru-Guzik A, Aziz MJ, Gordon RG, Nature Energy, 1, 16102, 2016
  30. Hu B, DeBruler C, Rhodes Z, Liu TL, J. American Chem. Soc., 139, 1207, 2017
  31. Lee W, Kwon BW, Kwon Y, ACS Appl. Mater. Interfaces, 10, 36882, 2018
  32. Luo J, Sam A, Hu B, DeBruler C, Wei X, Wang W, Liu TL, Nano Energy, 42, 215, 2017
  33. Zhang C, Zhao TS, Xu Q, An L, Zhao G, Appl. Energy, 155, 349, 2015
  34. Stevens KWH, Pryce MHL, Proc. R. Soc. Lond. A Math. Phys. Sci., 2019, 543, 1953
  35. Oosterhuis WT, Lang G, Phys. Rev., 178, 439, 1969
  36. Dunbar KR, Heintz RA, Prog. Inorg. Chem., 45, 283, 1997
  37. Gembicky M, Boca R, Renz F, Inorg. Chem. Commun., 3, 662, 2000
  38. Bahadori L, Chakrabarti MH, Manan NSA, Hashim MA, Mjalli FS, AlNashef IM, Brandon N, PloS. One, 10, e01442, 2015
  39. Nishimoto K, Watanabe Y, Yagi K, Biochim. Biophys. Acta Enzymol., 526, 34, 1978
  40. Kim KJ, Lee SW, Yim T, Kim JG, Choi JW, Kim JH, Park MS, Kim YJ, Sci. Rep., 4, 6906, 2014
  41. Titirici MM, Antonietti M, Chem. Soc. Rev., 39, 103, 2010
  42. Choudhury SD, Mohanty J, Bhasikuttan AC, Pal H, J. Phys. Chem. B, 114(33), 10717, 2010