Issue
Korean Journal of Chemical Engineering,
Vol.36, No.10, 1724-1731, 2019
Effect of petroleum pitch coating on electrochemical performance of graphite as anode materials
The electrochemical characteristics of artificial graphite coated with petroleum pitch were investigated as anode material in lithium ion batteries. Petroleum pitch with various softening points (SP 150, 200 and 250 °C) was prepared to coat the surface of artificial graphite using tetrahydrofuran as the solvent. Scanning electron microscopy and transmission electron microscopy were used to confirm the coating properties of the prepared anode materials. The electrochemical characteristics of the batteries were investigated by initial charge/discharge, cycle, rate performance, cyclic voltammetry and electrochemical impedance spectroscopy tests in the electrolyte of 1.0M LiPF6 (EC :DEC= 1 : 1 vol%). With the goal of optimizing the pitch coating process of graphite as an anode material, both the composition ratios of artificial graphite to petroleum pitch and the carbonization temperatures were varied. The best battery anode performance was found to be 10wt% coated carbon with heat treatment at 1,000 °C on the artificial graphite using petroleum pitch with SP 250 °C. Pitch-derived amorphous carbon coating effectively decreases irreversible capacity and increases the cycle stability. The prepared anode materials have good initial efficiency (92.9%), discharge capacity (343 mAh/g), cycle stability (97%), and rate performance of 10 C/0.1 C (84.1%).
[References]
  1. Ko HS, Kim JH, Wang J, Lee JD, J. Power Sources, 372, 107, 2017
  2. Ko HS, Park HW, Lee JD, Korean Chem. Eng. Res., 56(5), 718, 2018
  3. Lee SH, Lee JD, Korean Chem. Eng. Res., 56(4), 561, 2018
  4. Han YJ, Kim J, Yeo JS, An JC, Hong IP, Nakabayashi K, Miyawaki J, Jung JD, Yoon SH, Carbon, 94, 432, 2015
  5. Liu SH, Ying Z, Wang ZM, Li F, Bai S, Wen L, Chemg HM, NEW CARBON MATERIALS, 23(1), 30, 2008
  6. Ohta N, Nagaoka K, Hoshi K, Bitoh S, Inagaki M, J. Power Sources, 194(2), 985, 2009
  7. Li H, Zhou H, Chem. Commun., 48, 1201, 2012
  8. Kim BH, Kim JH, Kim JG, Bae MJ, Im JS, Lee CW, Kim S, J. Ind. Eng. Chem., 41, 1, 2016
  9. Ko HS, Choi JE, Lee JD, Appl. Chem. Eng., 25(6), 592, 2014
  10. Jo YJ, Lee JD, Korean Chem. Eng. Res., 57(1), 5, 2019
  11. Lee ML, Li YH, Liao SC, Chen JM, Yeh JW, Shih HC, Electrochim. Acta, 112, 529, 2013
  12. Yoon S, Kim H, Oh SM, J. Power Sources, 94(1), 68, 2001
  13. Nozaki H, Nagaoka K, Hoshi K, Ohta N, Inagaki M, J. Power Sources, 194(1), 486, 2009
  14. Kim JG, Kim JH, Im JS, Lee YS, Bae TS, J. Ind. Eng. Chem., 62, 176, 2018
  15. Seo SW, Choi YJ, Kim JH, Cho JH, Lee YS, Im JS, Catal. Lett., 29, 385, 2019
  16. Zhang HL, Li F, Liu C, Cheng HM, J. Phys. Chem. C, 112, 7767, 2008
  17. Han YJ, Hwang JU, Kim KS, Kim JH, Lee JD, Im JS, J. Ind. Eng. Chem., 73, 241, 2019
  18. Kim JG, Kim JH, Song BJ, Lee CW, Im JS, J. Ind. Eng. Chem., 36, 293, 2016
  19. Mabuchi A, TANSO, 65, 298, 1994
  20. Kim BH, Kim JH, Kim JG, Im JS, Lee CW, Kim S, J. Ind. Eng. Chem., 45, 99, 2017
  21. Wang C, Zhao H, Wang J, Wang J, Lv P, Ionics, 19, 221, 2013
  22. Zhang HL, Liu SH, Li F, Bai S, Li C, Tan J, Cheng HM, Carbon, 44, 2212, 2006
  23. Wan CY, Li H, Wu MC, Zhao CJ, J. Appl. Electrochem., 39(7), 1081, 2009
  24. Yosio M, Wang H, Fukuda K, Umeno T, Abe T, Ogumi Z, J. Mater. Chem., 14, 1754, 2004
  25. Dahn JR, Phys. Rev. B, 44, 9170, 1990
  26. Gan L, Guo HJ, Wang ZX, Li XH, Peng WJ, Wang JX, Huang SL, Su MR, Electrochim. Acta, 104, 117, 2013
  27. Wang HY, Yoshio M, J. Power Sources, 93(1-2), 123, 2001
  28. Ma Z, Zhuang YC, Deng YM, Song XN, Zuo XX, Xiao X, Nan JM, J. Power Sources, 376, 91, 2018
  29. Xie J, Tong L, Su LW, Xu YW, Wang LB, Wang YH, J. Power Sources, 342, 529, 2017
  30. Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y, Electrochim. Acta, 45(1-2), 67, 1999
  31. Gaberscek M, Dominko R, Jamnik J, Electrochem. Commun., 9, 2778, 2007