Issue
Korean Journal of Chemical Engineering,
Vol.36, No.10, 1708-1715, 2019
Synthesis of bi-functionalized ionic liquid - mesoporous alumina composite material and its CO2 capture capacity
Bi-functionalized ionic liquid (IL) - mesoporous alumina (MA) composite material was synthesized and used for CO2 capture. Ordered mesoporous alumina was synthesized by self-assembly method with aluminum isopropoxide as aluminum source. Then bi-functionalized ionic liquid 1-methoxyethyl-3-methyl imidazole glycinate ([MOEmim][Gly]) was immobilized on mesoporous alumina by ultrasonic-assisted impregnation method. Ordered mesostructure of alumina keeps well in the composite material. Compared with bi-functionalized ionic liquid, thermal stability of the composite material greatly improved. Finally, CO2 capture capacity of IL-MA composite material was studied under different temperatures. On the basis of both capture capacity and capture rate, 40 °C is the optimal temperature. The capture capacity is 1.42mol·mol IL-1 - equivalent to 144mg·g sorbent-1, which is higher than IL or MA alone. Furthermore, the capture capacity of composite material almost maintains constant after eight capture-regeneration cycles.
[References]
  1. Fashandi H, Zarrebini M, Ghodsi A, Saghafi R, J. Colloid Interface Sci., 476, 35, 2016
  2. Dai ZD, Noble RD, Gin DL, Zhang XP, Deng LY, J. Membr. Sci., 497, 1, 2016
  3. Sistla YS, Khanna A, Chem. Eng. J., 273, 268, 2015
  4. Fan W, Liu Y, Wang K, J. Clean Prod., 125, 296, 2016
  5. Chen Z, Deng S, Wei H, Wang B, Huang J, Yu G, ACS Appl. Mater. Inter., 5, 6937, 2013
  6. Zhang Y, Sunarso J, Liu S, Wang R, Int. J. Greenh. Gas Con., 12, 84, 2013
  7. Cho HK, Kim JE, Lim JS, Korean J. Chem. Eng., 34(5), 1475, 2017
  8. Uehara Y, Karami D, Mahinpey N, Ind. Eng. Chem. Res., 56(48), 14316, 2017
  9. Wang C, Luo H, Li H, Zhu X, Yu B, Dai S, Chem. Eur. J., 18, 2153, 2012
  10. Zhou LY, Shang XM, Fan J, Wang JJ, J. Chem. Thermodyn., 103, 292, 2016
  11. Zhang Y, Zhang S, Lu X, Zhou Q, Fan W, Zhang X, Chem Eur. J., 15, 3003, 2009
  12. Wan MM, Zhu HY, Li YY, Ma J, Liu S, Zhu JH, ACS Appl. Mater. Inter., 6, 12947, 2014
  13. Kumar K, Kumar A, J. Phys. Chem. C, 122, 8216, 2018
  14. Zhu JM, Xin F, Huang JH, Dong XC, Liu HM, Chem. Eng. J., 246, 79, 2014
  15. Nkinahamira F, Su TZ, Xie YQ, Ma GF, Wang HT, Li J, Chem. Eng. J., 326, 831, 2017
  16. Erto A, Silvestre-Albero A, Silvestre-Albero J, Rodriguez-Reinoso F, Balsamo M, Lancia A, Montagnaro F, J. Colloid Interface Sci., 448, 41, 2015
  17. Xu LL, Zhao H, Song HL, Chou LJ, Int. J. Hydrog. Energy, 37(9), 7497, 2012
  18. Tian M, Long Y, Xu D, Wei SY, Dong ZP, J. Colloid Interface Sci., 521, 132, 2018
  19. Plaza MG, Pevida C, Arias B, Fermoso J, Arenillas A, Rubiera F, Pis JJ, J. Them. Ana. Calorim., 92, 601, 2008
  20. Lara Y, Romeo LM, Energy Procedia, 114, 2380, 2017
  21. Ekka B, Dhaka RS, Patel RK, Dash P, J. Clean Prod., 151, 303, 2017
  22. Gunathilake C, Gangoda M, Jaroniec M, Ind. Eng. Chem. Res., 55(19), 5598, 2016
  23. Jeon H, Ahn SH, Kim JH, Min YJ, Lee KB, J. Mater. Sci., 46(11), 4020, 2011
  24. Fuentes CES, Guzman-Lucero D, Torres-Rodriguez M, Likhanova NV, Bolanos JN, Olivares-Xometl O, Lijanova IV, Sep. Purif. Technol., 182, 59, 2017
  25. Balsamo M, Erto A, Lancia A, Totarella G, Montagnaro F, Turco R, Fuel, 218, 155, 2018
  26. Sun L, Luo J, Tang S, Chem. J. Chinese U., 38, 1578, 2017
  27. Qian W, Xu Y, Xie B, Ge Y, Shu H, Int. J. Greenh. Gas. Con., 56, 194, 2017
  28. Yuan Q, Yin AX, Luo C, Sun LD, Zhang YW, Duan WT, Liu HC, Yan CH, J. Am. Chem. Soc., 130(11), 3465, 2008
  29. Tang S, Cui X, Gu L, Zhou H, Zhang X, Funct. Mater. Lett., 6, e13500, 2013
  30. Bates ED, Mayton RD, Ntai I, Davis JH, J. Am. Chem. Soc., 124(6), 926, 2002
  31. Ahmed A, Chaker Y, Belarbi EH, Abbas O, Chotard JN, Abassi HB, Nhien NV, Hadri ME, Bresson S, J. Mol. Struct., 1173, 653, 2018
  32. Yu WH, Zhang H, Lei ZP, Shui HF, Kang SG, Wang ZC, Ren SB, Pan CX, Fuel, 236, 861, 2019
  33. Zhang GJ, Zhao PY, Xu Y, Yang ZX, Cheng HZ, Zhang YF, ACS Appl. Mater. Inter., 10, 34340, 2018