Issue
Korean Journal of Chemical Engineering,
Vol.36, No.10, 1669-1679, 2019
An experiment and model of ceramic (alumina) hollow fiber membrane contactors for chemical absorption of CO2 in aqueous monoethanolamine (MEA) solutions
The chemical absorption of CO2 in a monoethanolamine (MEA) solution by a ceramic hollow fiber membrane contactor (HFMC) was investigated experimentally and numerically to obtain the best compromise between the mass transfer coefficient and structural characteristics such as membrane pore size and porosity. The mathematical model derived is based on the three resistances in the resistance-in-series model. The accuracy of the numerical simulation was verified quantitatively by the experimental data obtained in this study. A good agreement between experimental and computational results was found with an average absolute deviation (AAD) between observed data and predicted values of 2.86%. In addition, the effects of the operating condition (i.e., gas and liquid flow rates) on the mass transfer coefficients for ceramic HFMC systems were also studied, revealing that the membrane and gas-phase mass transfer resistances were dominant factors in the overall mass transfer. In conclusion, the present study suggests that the membrane structure plays a very important role in the optimization of HFMC performance. In fact, the best results were obtained with an intermediate range of the pore size between 102 and 104 nm, corresponding to the best compromise between performance (i.e., overall mass transfer coefficient) and applicability (i.e., breakthrough pressure).
[References]
  1. Kim YH, Ryu JH, Lee IB, Korean Chem. Eng. Res., 47(5), 531, 2009
  2. Bakeri G, Rezaei-DashtArzhandi M, Ismail AF, Matsuura T, Abdullah MS, Cheer NB, Korean J. Chem. Eng., 34(1), 160, 2017
  3. Nabian N, Ghoreyshi AA, Rahimpour A, Shakeri M, Korean J. Chem. Eng., 32(11), 2204, 2015
  4. Jeong D, Yun M, Oh J, Yum I, Lee Y, Korean J. Chem. Eng., 27(3), 939, 2010
  5. Ozturk B, Hughes R, Chem. Eng. J., 195-196, 122, 2012
  6. Boributh S, Rongwong W, Assabumrungrat S, Laosiripojana N, Jiraratananon R, J. Membr. Sci., 401-402, 175, 2012
  7. Hashemifard SA, Matsuura T, Ismail AF, Arzhandi MRD, Rana D, Bakeri G, Chem. Eng. J., 281, 970, 2015
  8. Li K, Kong JF, Tan XY, Chem. Eng. Sci., 55(23), 5579, 2000
  9. Atchariyawut S, Feng C, Wang R, Jiraratananon R, Liang DT, J. Membr. Sci., 285(1-2), 272, 2006
  10. Bakeri G, Ismail AF, Rana D, Matsuura T, Chem. Eng. J., 198-199, 327, 2012
  11. Korminouri F, Rahbari-Sisakht M, Matsuura T, Ismail AF, Chem. Eng. J., 264, 453, 2015
  12. Wang L, Zhang ZH, Zhao B, Zhang HW, Lu XL, Yang Q, Sep. Purif. Technol., 116, 300, 2013
  13. Lee HJ, Magnone E, Park JH, J. Membr. Sci., 494, 143, 2015
  14. Koonaphapdeelert S, Wu ZT, Li K, Chem. Eng. Sci., 64(1), 1, 2009
  15. Lee HJ, Park JH, J. Membr. Sci., 518, 79, 2016
  16. Yang MC, Cussler EL, AIChE J., 32, 1910, 1986
  17. Kreulen H, Smolders CA, Versteeg GF, van Swaaij WPM, J. Membr. Sci., 78, 197, 1993
  18. Versteeg GF, van Swaalj WPM, J. Chem. Eng. Data, 33, 29, 1988
  19. Ko JJ, Tsai TC, Lin CY, Wang HM, Li MH, J. Chem. Eng. Data, 46, 160, 2000
  20. Gabelman A, Hwang ST, J. Membr. Sci., 159(1-2), 61, 1999
  21. Li JL, Chen BH, Sep. Purif. Technol., 41(2), 109, 2005
  22. Boributh S, Assabumrungrat S, Laosiripojana N, Jiraratananon R, J. Membr. Sci., 380(1-2), 21, 2011
  23. Poling BE, Prausnitz JM, O’connell JP, Properties of gases and liquids, fifth Ed., McGraw-Hill (2004).
  24. Yang MC, Cussler EL, AIChE J., 32, 1910, 1986
  25. Costello MJ, Fane AG, Hogan PA, Schofield RW, J. Membr. Sci., 80, 1, 1993
  26. Cote P, Bersillon JL, Huyard A, J. Membr. Sci., 47, 91, 1989
  27. Prasad R, Sirkar KK, AIChE J., 34, 177, 1988
  28. DeCoursey WJ, Chem. Eng. Sci., 29, 1867, 1974
  29. Blauwhoff PMM, Versteef GF, van Swaaij WPM, Chem. Eng. Sci., 38, 1411, 1983
  30. Snijder ED, te Riele MJM, Versteeg GF, van Swaaij WPM, J. Chem. Eng. Data, 38, 475, 1993
  31. Khaisri S, deMontigny D, Tontiwachwuthikul P, Jiraratananon R, J. Membr. Sci., 347(1-2), 228, 2010
  32. Penttila A, Dell'Era C, Uusi-Kyyny P, Alopaeus V, Fluid Phase Equilib., 311, 59, 2011
  33. Dindore VY, Brilman DWF, Geuzebroek FH, Versteeg GF, Sep. Purif. Technol., 40(2), 133, 2004
  34. Jayarathna SA, Weerasooriya A, Dayarathna S, Eimer DA, Melaaen MC, J. Chem. Eng. Data, 58(4), 986, 2013
  35. Calderer M, Jubany I, Perez R, Marti V, de Pablo J, Chem. Eng. J., 165(1), 2, 2010
  36. Kim JH, Hong SK, Park SJ, Korean Chem. Eng. Res., 45(6), 619, 2007
  37. Quijada-Maldonado E, Aelmans TAM, Meindersma GW, de Haan AB, Chem. Eng. J., 223, 287, 2013
  38. Aboudheir A, Tontiwachwuthikul P, Chakma A, Idem R, Chem. Eng. Sci., 58(23-24), 5195, 2003
  39. Rongwong W, Jiraratananon R, Archariyawut S, Sep. Purif. Technol., 69(1), 118, 2009
  40. Kim YS, Yang SM, Sep. Purif. Technol., 21(1-2), 101, 2000
  41. Yang J, Yu XH, Yan JY, Tu ST, Dahlquist E, Appl. Energy, 112, 755, 2013
  42. Lv YX, Yu XH, Jia JJ, Tu ST, Yan JY, Dahlquist E, Appl. Energy, 90(1), 167, 2012
  43. Yan SP, Fang MX, Zhang WF, Wang SY, Xu ZK, Luo ZY, Cen KF, Fuel Process. Technol., 88(5), 501, 2007
  44. Rongwong W, Assabumrungrat S, Jiraratananon R, J. Membr. Sci., 429, 396, 2013
  45. Atchariyawut S, Jiraratananon R, Wang R, J. Membr. Sci., 304(1-2), 163, 2007
  46. Faiz R, Al-Marzouqi M, J. Membr. Sci., 342(1-2), 269, 2009
  47. DashtArzhandi MR, Ismail AF, Matsuura T, Ng BC, Abdullah MS, Chem. Eng. J., 269, 51, 2015
  48. Rahbari-Sisakht M, Rana D, Matsuura T, Emadzadeh D, Padaki M, Ismail AF, Chem. Eng. J., 246, 306, 2014
  49. Hasanoglu A, Romero J, Perez B, Plaza A, Chem. Eng. J., 160(2), 530, 2010
  50. Mansourizadeh A, Ismail AF, Chem. Eng. J., 165(3), 980, 2010