Issue
Korean Journal of Chemical Engineering,
Vol.36, No.10, 1604-1618, 2019
Comprehensive potential evaluation of the bio-oil production and nutrient recycling from seven algae through hydrothermal liquefaction
Hydrothermal liquefaction (HTL) of seven algae was conducted at both 280 and 350 °C with a reaction time of 30min and a mass ratio of 1/4 of algae to water to evaluate the utilization potential of bio-oil production and nutrient recycling in the aqueous by-product and solid residue particles. Chlorella and Nannochloropsis sp. exhibited the highest bio-oil yields at 280 °C (36.5% from Nannochloropsis sp.) and 350 °C (38.1% from Chlorella). Additionally, temperature had little effect on the energy recovery from Chlorella, Nannochloropsis sp., Spirulina, Cyanophyta and Euglena. The carbohydrates and lipids in the algae were primarily related to monoaromatic and single-ring heterocyclic compound generation in bio-oil. In addition, carbohydrates and proteins significantly affected oxygenated compound production. The sizable total carbon, ammonia nitrogen, total nitrogen and phosphate contents in the aqueous byproducts showed great potential as nutrient sources for algal cultivation and the production of value-added chemicals through recycling. Higher temperatures increased the percentage of ammonia nitrogen in the total nitrogen and reduced the phosphate concentration in the aqueous by-product. According to potential evaluation factors, Chlorella, Nannochloropsis sp., Spirulina, Cyanophyta and Euglena totally showed higher potential in terms of bio-oil production and aqueous nutrient recycling than Dunaliella salina and Enteromorpha prolifera, in which Nannochloropsis sp. exhibited the greatest utilization potential at investigated conditions.
[References]
  1. Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B, Bioenerg Res., 1(1), 20, 2008
  2. Miao X, Wu Q, Yang C, J. Anal. Appl. Pyrolysis, 71(2), 855, 2004
  3. Xu H, Miao X, Wu Q, J. Biotechnol., 126(4), 499, 2006
  4. Savage PE, Science, 338(6110), 1039, 2012
  5. Barreiro DL, Prins W, Ronsse F, Brilman W, Biomass Bioenerg., 53, 113, 2013
  6. Tian C, Li B, Liu Z, Zhang Y, Lu H, Renew. Sust. Energ. Rev., 38, 933, 2014
  7. Akiya N, Savage PE, Chem. Rev., 102(8), 272, 2002
  8. Peterson AA, Vogel F, Lachance RP, Froling M, Antal JMJ, Tester JW, Energy Environ. Sci., 1(1), 32, 2008
  9. Duan P, Savage PE, Ind. Eng. Chem. Res., 50(1), 52, 2010
  10. Cao L, Luo G, Zhang S, Chen J, RSC Adv., 6(18), 15260, 2016
  11. Zhou D, Zhang L, Zhang S, Fu H, Chen J, Energy Fuels, 24(7), 4054, 2010
  12. Song WH, Wang SZ, Guo Y, Xu DH, Int. J. Hydrog. Energy, 42(31), 20361, 2017
  13. Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama SY, Fuel, 73(12), 1855, 1994
  14. Valdez PJ, Nelson MC, Wang HY, Lin XN, Savage PE, Biomass Bioenergy, 46, 317, 2012
  15. Jena U, Das KC, Kastner JR, Bioresour. Technol., 102(10), 6221, 2011
  16. Brown TM, Duan PG, Savage PE, Energy Fuels, 24(6), 3639, 2010
  17. Miao C, Chakraborty M, Chen SL, Bioresour. Technol., 110, 617, 2012
  18. Valdez PJ, Savage PE, Algal Res., 2(4), 416, 2013
  19. Toor SS, Reddy H, Deng SG, Hoffmann J, Spangsmark D, Madsen LB, Holm-Nielsen JB, Rosendahl LA, Bioresour. Technol., 131, 413, 2013
  20. Guo Y, Song WH, Lu JM, Ma OR, Xu DH, Wang SZ, Algal Res., 11, 242, 2015
  21. Zhang B, Lin QS, Zhang QH, Wu KJ, Pu WH, Yang MD, Wu YL, RSC Adv., 7(15), 8944, 2017
  22. Yang C, Jia LS, Chen CP, Liu GF, Fang WP, Bioresour. Technol., 102(6), 4580, 2011
  23. Yang WC, Li XG, Liu SS, Feng LJ, Energy Conv. Manag., 87, 938, 2014
  24. Barreiro DL, Samori C, Terranella G, Hornung U, Kruse A, Prins W, Bioresour. Technol., 174, 256, 2014
  25. Zou SP, Wu YL, Yang MD, Li C, Tong JM, Energy Environ. Sci., 3(8), 1073, 2010
  26. Lu JW, Liu ZD, Zhang YH, Li BM, Lu Q, Ma YQ, Shen RX, Zhu ZB, J. Clean Prod., 142, 749, 2017
  27. Hognon C, Delrue F, Texier J, Grateau M, Thiery S, Miller H, Roubaud A, Biomass Bioenergy, 73, 23, 2015
  28. Eboibi BEO, Lewis DM, Ashman PJ, Chinnasamy S, Bioresour. Technol., 174, 212, 2014
  29. Jena U, Das KC, Kastner JR, Appl. Energy, 98, 368, 2012
  30. Abdul R, Wan Azlina WAKG, Taufiq Yap YH, Danquah MK, Razif H, RSC Adv., 5(88), 71805, 2015
  31. Leng LJ, Li J, Wen ZY, Zhou WG, Bioresour. Technol., 256, 529, 2018
  32. Mariluz BV, Ulrike SS, Gael P, Frederic V, Christian L, Algal Res., 8, 76, 2015
  33. Jena U, Vaidyanathan N, Chinnasamy S, Das KC, Bioresour. Technol., 102(3), 3380, 2011
  34. Yu G, Zhang Y, Schideman L, Funk T, Wang Z, Energy Environ. Sci., 4(11), 4587, 2011
  35. Zhu YH, Jones SB, Schmidt AJ, Albrecht KO, Edmundson SJ, Anderson DB, Algal Res., 39, 101467, 2019
  36. Zhang YH, Schideman L, E2-Energy, http://e2-energy.illinois.edu/ (Accessed March 6th 2011).
  37. Selvaratnam T, Henkanatte-Gedera SM, Muppaneni T, Nirmalakhandan N, Deng S, Lammers PJ, Energy, 104, 16, 2016
  38. Li Y, Leow S, Fedders AC, Sharma BK, Guest JS, Strathmann TJ, Green Chem., 19(4), 1163, 2017
  39. Madsen RB, Biller P, Jensen MM, Becker J, Iversen BB, Glasius M, Energy Fuels, 30(12), 10470, 2016
  40. Cherad R, Onwudili JA, Biller P, Williams PT, Ross AB, Fuel, 166, 24, 2016
  41. Gai C, Zhang YH, Chen WT, Zhou Y, Schideman L, Zhang P, Tommaso G, Kuo CT, Dong YP, Bioresour. Technol., 184, 328, 2015
  42. Edmundson S, Huesemann M, Kruk R, Lemmon T, Billing J, Schmidt A, Anderson D, Algal Res., 26, 415, 2017
  43. Elliott DC, Biller P, Ross AB, Schmidt AJ, Jones SB, Bioresour. Technol., 178, 147, 2015
  44. Faeth JL, Valdez PJ, Savage PE, Energy Fuels, 27(3), 1391, 2013
  45. Liu WJ, Tian K, Jiang H, Zhang XS, Ding HS, Yu HQ, Environ. Sci. Technol., 46(14), 7849, 2012
  46. Stanzione JF, Giangiulio PA, Sadler JM, La Scala JJ, Wool RP, ACS Sustain. Chem. Eng., 1(4), 419, 2013
  47. Biller P, Ross AB, Bioresour. Technol., 102(1), 215, 2011
  48. Anastasakis K, Ross AB, Bioresour. Technol., 102(7), 4876, 2011
  49. Vardon DR, Sharma BK, Scott J, Yu G, Wang ZC, Schideman L, Zhang YH, Strathmann TJ, Bioresour. Technol., 102(17), 8295, 2011
  50. Valdez PJ, Dickinson JG, Savage PE, Energy Fuels, 25(7), 3235, 2011
  51. Srokol Z, Bouche AG, van Estrik A, Strik RCJ, Maschmeyer T, Peters JA, Carbohydr. Res., 339, 1717, 2004
  52. Chen WT, Zhang YH, Zhang JX, Yu G, Schideman LC, Zhang P, Minarick M, Bioresour. Technol., 152, 130, 2014
  53. Qian LL, Wang SZ, Savage PE, Bioresour. Technol., 232, 27, 2017
  54. Chen WT, Zhang YH, Zhang JX, Schideman L, Yu G, Zhang P, Minarick M, Appl. Energy, 128, 209, 2014
  55. Williams PT, Onwudili J, Ind. Eng. Chem. Res., 44(23), 8739, 2005
  56. Nelson DA, Molton PM, Russell JA, Hallen RT, Ind. Eng. Chem. Prod. Res. Dev., 23(3), 471, 1984
  57. Sinag A, Kruse A, Schwarzkopf V, Ind. Eng. Chem. Res., 42(15), 3516, 2003
  58. Luijkx GCA, van Rantwijk F, van Bekkum H, Carbohydr. Res., 242, 131, 1993
  59. Bohutskyi P, Betenbaugh MJ, Bouwer EJ, Bioresour. Technol., 155, 366, 2014
  60. Sato N, Quitain AT, Kang K, Daimon H, Fujie K, Ind. Eng. Chem. Res., 43(13), 3217, 2004
  61. Zou SP, Wu YL, Yang MD, Kaleem I, Chun L, Tong JM, Energy, 35(12), 5406, 2010
  62. Jena U, Das KC, Energy Fuels, 25(11), 5472, 2011
  63. Barreiro DL, Zamalloa C, Boon N, Vyverman W, Ronsse F, Brilman W, Prins W, Bioresour. Technol., 146, 463, 2013
  64. Torri C, Alba LG, Samori C, Fabbri D, Brilman DWF, Energy Fuels, 26(1), 658, 2012
  65. Yang YF, Feng CP, Inamori Y, Maekawa T, Resour. Conserv. Recycl., 43(1), 21, 2004
  66. Tian CY, Liu ZD, Zhang YH, Li BM, Cao W, Lu HF, Duan N, Zhang L, Zhang TT, Bioresour. Technol., 184, 336, 2015
  67. Sukenik A, Tchernov D, Kaplan A, Huertas E, Lubian LM, Livne A, J. Phycol., 33, 969, 1997
  68. Carvalho JCM, Francisco FR, Almeida KA, Sato S, Converti A, J. Phycol., 40, 589, 2004
  69. Belkin S, Boussiba S, Plant Cell Physiol., 32(7), 953, 1991
  70. Gai C, Zhang YH, Chen WT, Zhou Y, Schideman L, Zhang P, Tommaso G, Kuo CT, Dong YP, Bioresour. Technol., 184, 328, 2015
  71. Maddi B, Panisko E, Wietsma T, Lemmon T, Swita M, Albrecht K, Howe D, Biomass Bioenergy, 93, 122, 2016
  72. Kulaev I, Vagabov V, Kulakovskaya T, J. Biosci. Bioeng., 88(2), 111, 1999
  73. Shakya R, Adhikari S, Mahadevan R, Shanmugam SR, Nam H, Hassan E, Dempster TA, Bioresour. Technol., 243, 1112, 2017
  74. Alba LG, Torri C, Samori C, van der Spek J, Fabbri D, Kersten SRA, Brilman DWF, Energy Fuels, 26(1), 642, 2011
  75. Chronakis IS, J. Agr. Food Chem., 49(2), 888, 2001
  76. Peterson AA, Lachance RP, Tester JW, Ind. Eng. Chem. Res., 49(5), 2107, 2010
  77. Wang YY, Wang CH, J. Yantai Univ., 19(2), 125, 2006
  78. Liu JG, Zhang JP, Yin MY, Meng ZC, Studia Marina Sinica, 48, 55, 2007
  79. Li XF, Wang CH, Wen SH, Food Ferment Ind., 25(4), 13, 1999
  80. Lou SL, Wu LG, He CX, Wu QJ, J. Xiamen Univ., 35(6), 955, 1996
  81. Shan DJ, Gong JH, China Patent, ZL200910091011.4 (2009).
  82. Wang KM, J. Hangzhou Inst. Appl. Eng., 17(3), 167, 2005
  83. Wu T, Preliminary Study on the Influence of Nutrients on the Growth of Ulva prolifera and its Absorption of Different Nitrogen Species [Master Dissertation]. Qingdao China (2013).