Issue
Korean Journal of Chemical Engineering,
Vol.36, No.9, 1543-1547, 2019
Upcycling of lignin waste to activated carbon for supercapacitor electrode and organic adsorbent
We introduce a facile strategy to upcycle lignin waste to valuable activated carbon (AC). Unlike conventional preparation processes of AC, such as high-temperature carbonization above 600 °Cfollowed by chemical or physical activation, we synthesized AC through low-carbonization (~300 °C), ball-milling, and thermal activation. Lowtemperature carbonization effectively led to the formation of the micro-pores and simultaneously high yield. Uniform activated morphology of char lignin is achieved through a ball-milling process. The as-synthesized AC exhibited a large specific surface area of 1075.18m2 g-1, high specific capacitance of 115.1 F g-1, and excellent adsorbability of 0.23 gtoluene per gactivated carbon. Therefore, we believe that the presented facile strategy could lead to the realization of upcycling of lignin waste to highly useful AC.
[References]
  1. Chatterjee S, Saito T, ChemSusChem., 8, 3941, 2015
  2. Duval A, Lawoko M, React. Funct. Polym., 85, 78, 2014
  3. Barta K, Anastas P, Beach E, Hansen T, Warner G, Foley P, U.S. Patent, 10,059,650 (2018).
  4. Belgacem MN, Gandini A, Monomers, polymers and composites from renewable resources, Amsterdam, Elsevier (2008).
  5. Joh HI, Song HK, Lee CH, Yun JM, Jo SM, Lee S, Na SI, Chien AT, Kumar S, Carbon, 70, 308, 2014
  6. Joh HI, Song HK, Yi KB, Lee S, Carbon, 53, 409, 2013
  7. Sircar S, Golden TC, Rao MB, Carbon, 34, 1, 1996
  8. Suhas, Carrott PJM, Carrott MMLR, Bioresour. Technol., 98(12), 2301, 2007
  9. Gao Z, Zhang Y, Song N, Li X, Mater. Res. Lett., 5, 69, 2017
  10. DA, Hegde G, RSC Adv., 5, 88339, 2015
  11. Kumar A, Hegde H, Manaf SABA, Ngaini Z, Sharma KV, Chem. Commun., 50, 12702, 2014
  12. Gonzalez-Serrano E, Cordero T, Rodriguez-Mirasol J, Cotoruelo L, Rodriguez JJ, Water Res., 38, 3043, 2004
  13. Paterson RJ, Lignin: properties and applications in biotechnology and bioenergy, Nova Science Publishers (2012).
  14. Yorgun S, Vural N, Demiral H, Microporous Mesoporous Mater., 122, 189, 2009
  15. Lillo-Rodenas MA, Cazorla-Amoros D, Linares-Solano A, Carbon, 41, 267, 2003
  16. Kou T, Yao B, Liu T, Li Y, J. Mater. Chem. A., 5, 17151, 2017
  17. Ma X, Yang H, Yu L, Chen Y, Li Y, Materials, 7, 4431, 2014
  18. Rodriguez-Mirasol J, Cordero T, Rodriguez JJ, Energy Fuels, 7, 133, 1993
  19. Xie XF, Goodell B, Zhang DJ, Nagle DC, Qian YH, Peterson ML, Jellison J, Bioresour. Technol., 100(5), 1797, 2009
  20. Kijima M, Hirukawa T, Hanawa F, Hata T, Bioresour. Technol., 102(10), 6279, 2011
  21. Brebu M, Cazacu G, Chirila O, Cell. Chem. Technol., 45, 43, 2011
  22. Brebu M, Vasile C, Cell. Chem. Technol., 44, 353, 2010
  23. Alen R, Kuoppala E, Oesch P, J. Anal. Appl. Pyrolysis, 36, 137, 1996
  24. Rodrigues J, Graca J, Pereira H, J. Anal. Appl. Pyrolysis, 58-59, 481, 2001
  25. Yang D, Zhong LX, Yuan TQ, Peng XW, Sun RC, Ind. Crop. Prod., 43, 141, 2013
  26. Oh K, Lee S, Park S, Ku BC, Lee SH, Bang YH, Joh HI, Sci. Adv. Mater., 9, 1566, 2017
  27. Arenas E, Chejne F, Carbon, 42, 2451, 2004
  28. Zolin A, Jensen AD, Jensen PA, Dam-Johansen K, Fuel, 81(8), 1065, 2002
  29. Azargohar R, Dalai AK, Microporous Mesoporous Mater., 85, 219, 2005
  30. Lashaki MJ, Fayaz M, Wang H, Hashisho Z, Philips JH, Anderson JE, Nichols M, Environ. Sci. Technol., 46, 4083, 2012