Issue
Korean Journal of Chemical Engineering,
Vol.36, No.9, 1536-1542, 2019
Room-temperature synthesis of Co3O4 nanoparticles self-assembled into meso/nanoporous microstructures and their application
Nano/mesoporous transition metal oxides have attracted extensive attention because of their distinctive morphology and properties, along with exhibiting better performance in many applications. We employed a simple modified version of the one-pot co-precipitation method at room temperature to synthesize three-dimensional mesoporous microstructures obtained by the self-aggregation of Co3O4 nanoparticles, which is sparse in the literature. The obtained structures were used as electrode materials for electrochemical capacitors or supercapacitors. The as-obtained Co3O4 electrode exhibited acceptable specific capacitances of 400 and 165 Fㆍg-1 at applied current densities of 1 and 10 Aㆍg-1, respectively, with over 99% of capacity retention after 4000 cycles.
[References]
  1. Corma A, Chem. Rev., 97(6), 2373, 1997
  2. Chen T, Dai L, Mater. Today, 16, 7, 2013
  3. Zhao C, Chou S, Wang Y, Zhou C, Liu HK, Dou SX, RSC Adv., 3, 16597, 2013
  4. Venugopal N, Mahmood Q, Park HS, Kim WS, J. Nanosci. Nanotechnol., 16, 12546, 2016
  5. Cao W, Wang W, Shi H, Wang J, Cao M, Liang Y, Zhu M, Nano Res., 11, 1437, 2018
  6. Bashir A, Shukla S, Lew JH, Shukla S, Bruno A, Gupta D, Baikie T, Patidar R, Akhter Z, Priyadarshi A, Mathews N, Mhaisalkar SG, Nanoscale, 10, 2341, 2018
  7. Venugopal N, Pullur AK, Kim WS, Ha HP, Catal. Lett., 144(12), 2151, 2014
  8. Xu JM, Cheng JP, J. Alloy. Compd., 686, 753, 2016
  9. Jang YI, Wang HF, Chiang YM, J. Mater. Chem., 8, 2761, 1998
  10. Luo S, Wang R, Yin J, Jiao T, Chen K, Zou G, Zhang L, Zhou J, Zhang L, Peng Q, ACS Omega, 4, 3946, 2019
  11. Wang C, Sun S, Zhang L, Yin J, Jiao T, Zhang L, Xu Y, Zhou J, Peng Q, Colloids Surf. A: Physicochem. Eng. Asp., 561, 283, 2019
  12. Xu Y, Ren B, Wang R, Zhang L, Liu Z, Zhan F, Wang R, Yin J, Han Z, Zhang L, Jiao T, Zhou J, Peng Q, Nanomaterials, 9, 10, 2019
  13. Feng Y, Jiao T, Yin J, Zhang L, Zhang L, Zhou J, Peng Q, Nanoscale Res. Lett., 14, 78, 2019
  14. Huang X, Wang R, Jiao T, Zou G, Zhan F, Yin J, Zhang L, Zhou J, Peng Q, ACS Omega, 4, 11897, 2019
  15. Furlanetto G, Formaro L, J. Colloid Interface Sci., 170(1), 169, 1995
  16. Venugopal N, Arunakumari N, Sohn KY, Int. J. Electrochem. Sci., 13, 2069, 2018
  17. Venugopal N, Moon JS, Park WW, Song HJ, Sohn KY, Int. J. Electrochem. Sci., 13, 8313, 2018
  18. Wang CM, Baer DR, Bruemmer SM, Engelhard MH, Bowden ME, Sundararajan JA, Qiang Y, J. Nanosci. Nanotechnol., 11, 8488, 2011
  19. Cao Y, Yuan F, Yao M, Bang JH, Lee JH, Cryst. Eng. Comm., 16, 826, 2014
  20. Pralong V, Delahaye-Vidal A, Beaudoin B, Gerand B, Tarascon JM, J. Mater. Chem., 9, 955, 1999
  21. Zeng HC, Lim YY, J. Mater. Res., 15, 6, 2000
  22. Ayyappan S, Gopalan RS, Subbanna GN, Rao CNR, J. Mater. Res., 12, 398, 1997
  23. He T, Chen D, Jiao X, Wang Y, Duan Y, Chem. Mater., 17, 4023, 2005
  24. Hadjiev VH, Iliev MN, Vergilov IV, J. Phys. C: Solid State Phys., 21, L199, 1988
  25. Lee DY, Yoon SY, Shrestha NK, Lee SH, Ahn H, Han SH, Microporous Mesoporous Mater., 153, 163, 2012
  26. Jafta CJ, Nkosi F, le Roux L, Mathe MK, Kebede M, Makgopa K, Song Y, Tong D, Oyama M, Manyala N, Chen SW, Ozoemena KI, Electrochim. Acta, 110, 228, 2013
  27. (a) Wang G, Shen X, Horvat J, Wang B, Liu H, Wexler D, Yao J, J. Phys. Chem., 113, 4357 (2009); (b) Beguin F, Presser V, Balducci A, Frackowiak E, Adv. Mater., 26, 2219 (2014).
  28. Cui L, Li J, Zhang XG, J. Appl. Electrochem., 39(10), 1871, 2009
  29. Wang L, Liu X, Wang X, Yang X, Lu L, J. Mater. Sci., 22, 601, 2011
  30. Xiao YH, Cao YB, Gong YY, Zhang AQ, Zhao JH, Fang SM, Jia DZ, Li F, J. Power Sources, 246, 926, 2014