Issue
Korean Journal of Chemical Engineering,
Vol.36, No.9, 1518-1526, 2019
Synthesis of InP nanocrystals using triphenyl phosphite as phosphorus source
Commercially viable synthesis of InP nanocrystals (NCs) involves highly pyrophoric phosphorus (P) precursor, tris(trimethylsilyl) phosphine (TMS3P). Finding a cheap and safe alternative would be the holy grail. We report the synthesis of InP NCs using triphenyl phosphite, an inexpensive and relatively safe phosphorous source. By reacting indium chloride and triphenyl phosphite, we obtained large-sized and black-colored InP NCs, yet without any distinct feature that shows quantum confinement effect. Addition of ZnCl2 resulted in InP NCs with controlled size, which was manifested in the shift of 1S peak in absorption spectra. By coating ZnS shell on InP NCs, we achieved photoluminescence with some extent of trap emission, showing maximum total quantum yield (QY) of 23% (8% of band-edge emission QY). We used 31P nuclear magnetic resonance (NMR), diffusion-ordered spectroscopy (DOSY), and mass spectrometry (MS) to assign intermediates and following mechanisms of the InP synthesis using triphenyl phosphite. The development of this safe and cost-effective P precursor opens broader opportunity space for large-scale production of InP NC.
[References]
  1. Alivisatos AP, J. Phys. Chem., 100(31), 13226, 1996
  2. Murray CB, Kagan CR, Bawendi MG, Annu. Rev. Mater. Res., 30, 545, 2000
  3. Talapin DV, Murray CB, Science, 310, 86, 2005
  4. Kim WD, Kim D, Yoon DE, Lee H, Lim J, Bae WK, Lee DC, Chem. Mater., 31, 3066, 2019
  5. Shirasaki Y, Supran GJ, Bawendi MG, Bulovic V, Nat. Photonics, 7, 13, 2012
  6. Woo JY, Ko JH, Song JH, Kim K, Choi H, Kim YH, Lee DC, Jeong S, J. Am. Chem. Soc., 136(25), 8883, 2014
  7. Woo JY, Lee S, Lee S, Kim WD, Lee K, Kim K, An HJ, Lee DC, Jeong S, J. Am. Chem. Soc., 138(3), 876, 2016
  8. Woo JY, Kim Y, Bae J, Kim TG, Kim JW, Lee DC, Jeong S, Chem. Mater., 29, 7088, 2017
  9. Kim D, Lee YK, Lee D, Kim WD, Bae WK, Lee DC, ACS Nano, 11, 12461, 2017
  10. Peng XG, Manna L, Yang WD, Wickham J, Scher E, Kadavanich A, Alivisatos AP, Nature, 404(6773), 59, 2000
  11. Kim WD, Yoon DE, Kim D, Koh S, Bae WK, Chae WS, Lee DC, J. Phys. Chem. C, 123, 9445, 2019
  12. Koh S, Kim WD, Bae WK, Lee YK, Lee DC, Chem. Mater., 31, 1990, 2019
  13. Tersoff J, Teichert C, Lagally MG, Phys. Rev. Lett., 76, 1675, 1996
  14. Jeong BG, Park YS, Chang JH, Cho I, Kim JK, Kim H, Char K, Cho J, Klimov VI, Park P, Lee DC, Bae WK, ACS Nano, 10, 9297, 2016
  15. Kim D, Bae WK, Kim SH, Lee DC, Nano Lett., 19, 963, 2019
  16. Kim WD, Chae WS, Bae WK, Lee DC, Chem. Mater., 27, 2797, 2015
  17. Hohng S, Ha T, J. Am. Chem. Soc., 126(5), 1324, 2004
  18. Kagan CR, Murray CB, Nirmal M, Bawendi MG, Phys. Rev. Lett., 76, 1517, 1996
  19. Nirmal M, Brus L, Accounts Chem. Res., 32, 407, 1999
  20. Burda C, Chen XB, Narayanan R, El-Sayed MA, Chem. Rev., 105(4), 1025, 2005
  21. Koh S, Lee DC, MRS Commun., 8, 742, 2018
  22. Xie R, Battaglia D, Peng X, J. Am. Chem. Soc., 129(50), 15432, 2007
  23. Micic OI, Curtis CJ, Jones KM, Sprague JR, Nozik AJ, J. Phys. Chem., 98(19), 4966, 1994
  24. Battaglia D, Peng X, Nano Lett., 2, 1027, 2002
  25. Guzelian AA, Katari JE, Kadavanich AV, Banin U, Hamad K, Juban E, Alivisatos AP, Wolters RH, Arnold CC, Heath JR, J. Phys. Chem., 100(17), 7212, 1996
  26. Micic OI, Sprague JR, Curtis CJ, Jones KM, Machol JL, Nozik AJ, Giessen H, Fluegel B, Mohs G, Peyghambarian N, J. Phys. Chem., 99(19), 7754, 1995
  27. Cui J, Beyler AP, Marshall LF, Chen O, Harris DK, Wanger DD, Brokmann X, Bawendi MG, Nat. Chem., 5, 602, 2013
  28. Koh S, Eom T, Kim WD, Lee K, Lee D, Lee YK, Kim H, Bae WK, Lee DC, Chem. Mater., 29, 6346, 2017
  29. Singh A, Chawla P, Jain S, Sharma SN, Physica E, 90, 175, 2017
  30. Li L, Protiere M, Reiss P, Chem. Mater., 20, 2621, 2008
  31. Bang E, Choi Y, Cho J, Suh YH, Ban HW, Son JS, Park J, Chem. Mater., 29, 4236, 2017
  32. Tessier MD, Dupont D, De Nolf K, De Roo J, Hens Z, Chem. Mater., 27, 4893, 2015
  33. Buffard A, Dreyfuss S, Nadal B, Heuclin H, Xu X, Patriarche G, Mezailles N, Dubertret B, Chem. Mater., 28, 5925, 2016
  34. Liu J, Meyns M, Zhang T, Arbiol J, Cabot A, Shavel A, Chem. Mater., 30, 1799, 2018
  35. Andaraarachchi HP, Thompson MJ, White MA, Fan HJ, Vela J, Chem. Mater., 27, 8021, 2015
  36. Leto JR, Leto MF, J. Am. Chem. Soc., 83, 2944, 1961
  37. Vinal RS, Reynolds LT, Inorg. Chem., 3, 1062, 1964
  38. Khanna PK, Jun KW, Hong KB, Baeg JO, Mehrotra GK, Mater. Chem. Phys., 92(1), 54, 2005
  39. Harris DK, Bawendi MG, J. Am. Chem. Soc., 134(50), 20211, 2012
  40. Shin AJ, Eun JJ, Lim JE, Method for Preparing Metal Phosphide Nanocrystal From Phosphite Compound and Method for Passivating Nanocrystal Core with the Same, in: L. Samsung Electronics Co. (Ed.) Korea (2013).
  41. Byun HJ, Lee JC, Yang H, J. Colloid Interface Sci., 355(1), 35, 2011
  42. Caruntu D, Rostamzadeh T, Costanzo T, Parizi SS, Caruntu G, Nanoscale, 7, 12955, 2015
  43. Hu L, Wang C, Lee S, Winans RE, Marks LD, Poeppelmeier KR, Chem. Mater., 25, 378, 2013
  44. Laufersky G, Bradley S, Frecaut E, Lein M, Nann T, Nanoscale, 10, 8752, 2018
  45. Ando K, Yamaguchi M, Uemura C, Phys. Rev. B, 34, 3041, 1986
  46. Gislason HP, Watkins GD, Phys. Rev. B, 33, 2957, 1986
  47. Ryu E, Kim S, Jang E, Jun S, Jang H, Kim B, Kim SW, Chem. Mater., 21, 573, 2009
  48. Narayanaswamy A, Feiner L, Meijerink A, Van der Zaag P, ACS Nano, 3, 2539, 2009
  49. Shen W, Tang H, Yang X, Cao Z, Cheng T, Wang X, Tan Z, You J, Deng Z, J. Mater. Chem. C, 5, 8243, 2017
  50. Li L, Reiss P, J. Am. Chem. Soc., 130(35), 11588, 2008
  51. Xu S, Ziegler J, Nann T, J. Mater. Chem., 18, 2653, 2008
  52. Lim J, Bae WK, Lee D, Nam MK, Jung J, Lee C, Char K, Lee S, Chem. Mater., 23, 4459, 2011
  53. Lim J, Jeong BG, Park M, Kim JK, Pietryga JM, Park YS, Klimov VI, Lee C, Lee DC, Bae WK, Adv. Mater., 26(47), 8034, 2014