Issue
Korean Journal of Chemical Engineering,
Vol.36, No.9, 1509-1517, 2019
Fluorescence detection of bisphenol A in aqueous solution using magnetite core-shell material with gold nanoclusters prepared by molecular imprinting technique
Technologies for detecting endocrine disrupting compounds such as bisphenol A (BPA) in an aqueous solution in a convenient way and low cost have gained much attention. In this work, to overcome the drawbacks of current detection methods, we applied molecular imprinted polymers (MIPs) to core-shell materials. The core-shell material has the advantage that both properties of the core and shell materials can be used simultaneously. After binding BPA in an aqueous solution, the magnetic core material was able to be recovered using magnetism. In addition, functional groups were easily introduced using silica as a shell material. Gold nanoclusters (AuNCs) and MIPs were used to give changes in the fluorescence intensity when BPA was bound to the prepared core-shell material. The physical properties of the prepared Fe3O4@SiO2@AuNCs-MIP (CS-MIP) were analyzed and fluorescence intensities of CSMIP for BPA were examined. The prepared material was recovered using a magnet, and the recovered CS-MIP was regenerated to investigate how the fluorescence properties for BPA changed in the subsequent reuses.
[References]
  1. Thomas KV, Hurst MR, Matthiessen P, Waldock MJ, Environ. Toxicol. Chem., 20, 2165, 2001
  2. Colborn T, Dumanoski D, Myers JP, Our stolen future, Dutton, New York (1996).
  3. Ankley GT, Johnson RD, Toth G, Folman LC, Detenbeck NE, Bradbury SP, Rev. Toxicol. Ser. B: Environ. Toxicol., 1, 71, 1997
  4. Kavlock RJ, Daston GP, Derosa C, Fenner-Crisp P, Gray LE, et al., Environ. Health Perspect., 104, 715, 1996
  5. Ahn K, Kim B, J. Environ. Toxicol., 18, 175, 2003
  6. Zimmers SM, Browne EP, Okeefe PW, Anderton DL, Kramer L, Reckhow DA, Arcaro KF, Chemosphere, 104, 237, 2014
  7. Shen G, Yu G, Cai ZX, Zhang Z, Chin. Sci. Bull., 50, 2681, 2005
  8. Dong RC, Li JH, Xiong H, Lu WH, Peng HL, Chen LX, Talanta, 130, 182, 2014
  9. Kim H, Kim Y, Curr. Appl. Phys., 9, 88, 2009
  10. Kim H, Kim Y, Ko J, J. Korean Inst. Gas, 12, 32, 2008
  11. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558, 2007
  12. Lian W, Liu S, Yu J, Xing X, Li J, Cui M, Huang J, Biosens. Bioelectron., 38, 163, 2012
  13. Kim Y, Johnson RC, Hupp JT, Nano Lett., 1, 165, 2001
  14. Liu J, Lu Y, Nat. Protoc., 1, 246, 2006
  15. Zhang C, Suslick KS, J. Am. Chem. Soc., 127(33), 11548, 2005
  16. Kim Y, Lee B, Korean Chem. Eng. Res., 49(4), 393, 2011
  17. Chaudhuri RG, Paria S, Chem. Rev., 112(4), 2373, 2012
  18. Ding HL, Zhang YX, Wnag S, Xu JM, Xu SC, Li GH, Chem. Mater., 24, 4752, 2012
  19. Deng Y, Qi D, Deng C, Zhang X, Zhao D, J. Am. Chem. Soc., 130(1), 28, 2008
  20. Zhou Q, Wang Y, Xiao J, Fan H, Synth. Met., 212, 113, 2016
  21. Zhao X, Cai Y, Wang T, Shi Y, Jiang G, Anal. Chem., 80, 9091, 2008
  22. Deng Y, Wang C, Hu J, Yang W, Fu S, Colloids Surf. A: Physicochem. Eng. Asp., 262, 87, 2005
  23. Chen TT, Hu YH, Cen Y, Chu X, Lu Y, J. Am. Chem. Soc., 135(31), 11595, 2013
  24. Shang L, Dong SJ, Nienhaus GU, Nano Today, 6(4), 401, 2011
  25. Xie JP, Zheng YG, Ying JY, Chem. Commun., 46, 961, 2010
  26. Jin LH, Shang L, Guo SJ, Fang YX, Wen D, Wang L, Yin JY, Dong SJ, Biosens. Bioelectron., 26, 1965, 2011
  27. Huang JD, Zhang XM, Liu S, Lin Q, He XR, Xing XR, Lian WJ, J. Appl. Electrochem., 41(11), 1323, 2011
  28. Li JH, Zhang Z, Xu SF, Chen LX, Zhou N, Xiong H, Peng HL, J. Mater. Chem., 21, 19267, 2011
  29. Chen LX, Xu SF, Li JH, Chem. Soc. Rev., 40, 2922, 2011
  30. Suriyanarayanan S, Cywinski PJ, Moro AJ, Mohr GJ, Kutner W, Top. Curr. Chem., 325, 165, 2012
  31. Yang Q, Li J, Wang X, Peng H, Xing H, Chen L, Biosens. Bioelectron., 112, 54, 2018
  32. Wang X, Yu S, Liu W, Fu L, Wang Y, Li J, Chen L, ACS Sens., 3, 378, 2018
  33. Gao DM, Zhang ZP, Wu MH, Xie CG, Guan GJ, Wang DP, J. Am. Chem. Soc., 129(25), 7859, 2007
  34. Ji Y, Yin J, Xu Z, Zhao C, Huang H, Zhang H, Wang C, Anal. Bioanal. Chem., 395, 1125, 2009
  35. Xu Z, Ding L, Long Y, Xu L, Wang L, Xu C, Anal. Methods, 3, 1737, 2011
  36. Elbialy NS, Fathy MM, Khalil WM, Phys. Med., 30, 843, 2014
  37. Wu X, Zhang Z, Li J, You H, Li Y, Chen L, Sens. Actuators B-Chem., 211, 507, 2015
  38. Htun T, J. Fluoresc., 14, 217, 2004
  39. Yamaura M, Camilo R, Sampaio L, Macedo M, Nakamura M, Toma H, J. Magn. Magn. Mater., 279, 210, 2004
  40. Groen J, Peffer L, Perez-Ramirez J, Microporous Mesoporous Mater., 60, 1, 2003
  41. Socrates G, Infrared Characteristic Group Frequencies, Wiley, New York (1994).
  42. Wang JH, Zheng SR, Shao Y, Liu JL, Xu ZY, Zhu DQ, J. Colloid Interface Sci., 349(1), 293, 2010
  43. Lakowicz JR, Quenching of fluorescence. Principles of fluorescence spectroscopy, Springer Publications, Boston (1983).
  44. Kamat BP, Seetharamappa J, J. Chem. Sci., 117, 649, 2005
  45. Cheng PPH, Silvester D, Wang GL, Kalyuzhny G, Douglas A, Murray RW, J. Phys. Chem. B, 110(10), 4637, 2006
  46. Gopal R, Lee JK, Lee JH, Kim YG, Oh GC, Seo CH, Park Y, Int. J. Mol. Sci., 14(1), 2190, 2013
  47. Colpa JP, MacLean C, Mackor EL, Tetrahedron, 19, 65, 1963
  48. Gunnlaugsson T, Kruger PE, Lee TC, Parkesh R, Pfeffer FM, Hussey GM, Tetrahedron Lett., 44, 6575, 2003
  49. Kim YH, Lee B, Choo KH, Choi SJ, Microporous Mesoporous Mater., 185, 121, 2014