Issue
Korean Journal of Chemical Engineering,
Vol.36, No.9, 1432-1440, 2019
CO2 capture and preparation of spindle-like CaCO3 crystals for papermaking using calcium carbide residue waste via an atomizing approach
Spindle-like CaCO3 crystals with controllable sizes for papermaking were successfully prepared using CO2 (8% CO2/N2 mixture gas) and calcium carbide residue (CCR) waste, a by-product of acetylene gas and polyvinyl chloride production, as the raw materials by an atomization method at room temperature. The influences of solution concentration, reaction temperature, and gas/liquid flow rate ratios on the properties of the CaCO3 crystal were systematically investigated, and a possible atomization mechanism was proposed. The size of the as-prepared CaCO3 crystal with pure calcite phase was turned from 4.71×4.02 μm to 1.82×1.12 μm by adjusting the reaction conditions. The application of the as-prepared CaCO3 crystals from CCR waste as a filler for papermaking was explored. The R475 blue light whiteness of paper was increased from 77.3 to 80.6 with 11.4% CaCO3 crystals.
[References]
  1. Monastersky R, Nature, 497, 13, 2013
  2. Buyukcakir O, Je S, Talapaneni S, Kim D, Coskun A, ACS Appl. Mater. Inter.
  3. Cox P, Betts R, Jones C, Spall S, Totterdell I, Nature, 408, 184, 2004
  4. Lee JH, Lee HJ, Lim SY, Kim BG, Choi JW, J. Am. Chem. Soc., 137(22), 7210, 2015
  5. Olabisi LS, Reich PB, Johnson KA, Kapuscinski AR, Suh S, Wilson EJ, Environ. Sci. Technol., 43, 1696, 2009
  6. Yuan ZH, Eden MR, Gani R, Ind. Eng. Chem. Res., 55(12), 3383, 2016
  7. Alonso G, Bahamon D, Keshavarz F, Gimenez X, Gamallo P, Sayos R, J. Phys. Chem. C, 122, 3945, 2018
  8. Zou R, Abdel-Fattah AI, Xu H, Zhao Y, Hickmott DD, CrystEngComm, 12, 1337, 2010
  9. Thote JA, Chatti RV, Iyer KD, Kumar V, Valechha AN, Labhsetwar NK, Biniwale RB, Yenkie MKN, Rayalu SS, J. Environ. Sci., 24, 1979, 2012
  10. Stolaroff JK, Lowry GV, Keith DW, Energy Conv. Manag., 46(5), 687, 2005
  11. Huijgen WJJ, WurWageningen Ur, 3, 13, 2007
  12. Amnadnua K, Tangchirapatand W, Jaturapitakku C, Mater. Des., 51, 894, 2013
  13. Dueramae S, Tangchirapat W, Jaturapitakkul C, Adv. Powder Technol., 29(3), 672, 2018
  14. Cardoso FA, Fernandes HC, Pileggi RG, Cincotto MA, John VM, Powder Technol., 195(2), 143, 2009
  15. Zhang DF, Li SG, Song WL, Lin WG, Energy Sources Part A-Recovery Util. Environ. Eff., 38(4), 577, 2016
  16. Rattanashotinunt C, Thairit P, Tangchirapat W, Jaturapitakkul C, Mater. Des., 46, 106, 2013
  17. Cheng J, Zhou JH, Liu JZ, Cao XY, Cen KF, Energy Fuels, 23, 2506, 2009
  18. Cao J, Liu F, Lin Q, Zhang Y, Prog. Nat. Sci., 18, 1147, 2008
  19. Li YJ, Su MY, Xie X, Wu SM, Liu CT, Appl. Energy, 145, 60, 2015
  20. Li Y, Sun R, Liu C, Liu H, Lu C, Int. J. Greenh. Gas Con., 9, 117, 2012
  21. CesarConsoli N, BeckSaldanha R, CorreaMallmann J, Paula T, ZakhariaHoch B, Constr. Build. Mater., 157, 65, 2017
  22. Guo B, Zhao T, Sha F, hang ZF, Li Q, Zhao J, Zhang J, J. CO2 Util., 18, 23, 2017
  23. Kirboga S, Oner M, CrystEngComm, 15, 3678, 2013
  24. Vinoba M, Bhagiyalakshmi M, Grace AN, Chu DH, Nam SC, Yoon Y, Yoon SH, Jeong SK, Langmuir, 29(50), 15655, 2013
  25. Wang H, Alfredsson V, Tropsch J, Ettl R, Nylander T, ACS Appl. Mater. Inter., 5, 4035, 2013
  26. Chen D, Ven TGMVD, Colloids Surf. A: Physicochem. Eng. Asp., 504, 11, 2016
  27. Nypelo T, Osterberg M, Laine J, ACS Appl. Mater. Inter., 3, 3725, 2011
  28. Said A, Mattila HP, Jarvinen M, Zevenhoven R, Appl. Energy, 112, 765, 2013
  29. Wang J, Wei P, Liu P, Sun W, BioResources, 7, 5894, 2012
  30. Chapman AM, Keyworth C, Kember MR, Lennox AJJ, Williams CK, ACS Catal., 5, 1581, 2015
  31. Xu S, Ye Z, Wu P, ACS Sustain. Chem. Eng., 3, 1810, 2015
  32. Nebel H, Neumann M, Mayer C, Epple M, Inorg. Chem., 47(17), 7874, 2008
  33. Kirboga S, Oner M, Akyol E, J. Cryst. Growth, 401, 266, 2014
  34. Gopi SP, Subramanian VK, Palanisamy K, Ind. Eng. Chem. Res., 54(14), 3618, 2015
  35. Lopez-Marzo A, Merkoci J, J. Mater. Chem., 22, 15326, 2012
  36. Wu J, Zeng RJ, Cryst. Growth Des., 17, 1854, 2017
  37. Xiang JH, Cao HQ, Warner JHA, Watt AR, Cryst. Growth Des., 8, 4583, 2008
  38. Zheng L, Hu YL, Ma YJ, Zhou Y, Nie FD, Liu X, Pei CH, J. Cryst. Growth, 361, 217, 2012
  39. Zheng Z, Huang B, Ma H, hang ZX, Liu M, Liu Z, Wong K, Lau W, Cryst. Growth Des., 7, 1912, 2007
  40. Sha F, Zhu N, Bai Y, Li Q, Guo B, Zhao T, Zhang F, Zhang J, ACS Sustain. Chem. Eng., 4, 3032, 2016
  41. Geng X, Liu L, Jiang J, Yu S, Cryst. Growth Des., 10, 3448, 2010
  42. Dickinson S, Mcgrath K, J. Mater. Chem., 13, 928, 2003
  43. Han SJ, Yoo M, Kim DW, Wee JH, Energy Fuels, 25(8), 3825, 2011
  44. Yang JH, Shih SM, Wu CI, Tai CYD, Powder Technol., 202(1-3), 101, 2010
  45. Zhang ZP, Gao DM, Zhao H, Xie CG, Guan GJ, Wang DP, Yu SH, J. Phys. Chem. B, 110(17), 8613, 2006
  46. Liu L, He D, Wang GS, Yu SH, Langmuir, 27(11), 7199, 2011
  47. Butler JW, Lim CJ, Grace JR, Fuel, 127, 78, 2014
  48. Ma L, Zhao B, Shi H, Sha F, Liu C, Du H, Zhang JB, CrystEngComm., 19, 7132, 2017
  49. Biasin A, Segre CU, Strumendo M, Cryst. Growth Des., 15, 5188, 2015
  50. Gaudreault R, Cesare N, Ven T, Weitz D, Ind. Eng. Chem. Res., 54, 6243, 2015
  51. Boissou F, Muhlbauer A, Vigier KDO, Leclercq L, Kunz W, Marinkovic S, Estrine B, Nardello-Rataj V, Jerome F, Green Chem., 16, 2463, 2014
  52. Wang Z, Zhang Y, Jiang F, Fang H, Wang Z, Polym. Chem., 5, 3379, 2014
  53. Semsarilar M, Tom J, Ladmiral V, Perrier S, Polym. Chem., 3, 3266, 2012