Issue
Korean Journal of Chemical Engineering,
Vol.36, No.8, 1371-1376, 2019
Atmospheric-pressure floating electrode-dielectric barrier discharge with flexible electrodes: Effect of conductor shapes
The plasma characteristics of atmospheric-pressure floating electrode-dielectric barrier discharges (FEDBDs), which comprised flexible electrodes and were able to generate a plasma along the curvature of skin, were investigated using Cu conductors with various shapes in the flexible powered electrode. These Cu conductors have similar areas but different contour lengths and the shapes of a square, a dumbbell, a star, and a zigzag pattern. The optical intensity and electron temperature of the atmospheric-pressure FE-DBDs increased with the contour length of the conductor used in the flexible powered electrode. This behavior is explained in terms of the changes in the strength of the electric field with the contour length of the conductor, implying that the plasma properties of atmospheric-pressure FEDBDs with flexible electrodes can be controlled by modulating the contour length or the shape of the electrical conductor in the flexible powered electrode. These results are expected to contribute to the development of an atmospheric- pressure FE-DBD system for plasma medicine.
[References]
  1. Schaepkens M, Oehrlein GS, Hedlund C, Jonsson LB, Blom HO, J. Vac. Sci. Technol. A, 16(6), 3281, 1998
  2. Kim JH, Cho SW, Park CJ, Chae H, Kim CK, Thin Solid Films, 637, 43, 2017
  3. Cho SW, Kim CK, Lee JK, Moon SH, Chae H, J. Vac. Sci. Technol. A, 30, 051301, 2012
  4. Lee TH, Lim BR, Yong KJ, Kwon WS, Park MW, Korean J. Chem. Eng., 34(9), 2502, 2017
  5. Ji SH, Jang WS, Son JW, Kim DH, Korean J. Chem. Eng., 35(12), 2474, 2018
  6. Choi JH, Kim SJ, Kim HT, Cho SM, Korean J. Chem. Eng., 35(6), 1348, 2018
  7. Fridman G, Friedman G, Gutsol A. Shekhter AB, Vasilets VN, Fridman A, Plasma Process. Polym., 5, 503, 2008
  8. Ehlbeck J, Schnabel U, Polak M, Winter J, von Woedtke T, Brandenburg R, von dem Hagen T, Weltmann KD, J. Phys. D-Appl. Phys., 44, 013002, 2011
  9. Graves DB, J. Phys. D-Appl. Phys., 45, 206330, 2012
  10. Xiong Z, Roe J, Grammer TC, Graves DB, Plasma Process. Polym., 13, 588, 2016
  11. Weltmann KD, von Woedtke T, Plasma Phys. Control. Fusion, 59, 014031, 2017
  12. Kolb JF, Mohamed AA, Price RO, Swanson RJ, Bowman A, Chiavarini RL, Stacey M, Schoenbach KH, Appl. Phys. Lett., 92, 241501, 2008
  13. Lu XP, Jiang ZH, Xiong Q, Tang ZY, Pan Y, Appl. Phys. Lett., 92, 151504, 2008
  14. Lee HW, Nam SH, Mohamed AH, Kim GC, Lee JK, Plasma Process. Polym., 7, 274, 2010
  15. Kogelschatz U, Plasma Chem. Plasma Process., 23(1), 1, 2003
  16. Pavlovich MJ, Chen Z, Sakiyama Y, Clark DS, Graves DB, Plasma Process. Polym., 10, 69, 2013
  17. Pei X, Liu J, Xian Y, Lu X, J. Phys. D-Appl. Phys., 47, 145204, 2014
  18. Fridman G, Peddinghaus M, Ayan H, Fridman A, Balasubramanian M, Gutsol A, Brooks A, Friedman G, Plasma Chem. Plasma Process., 26(4), 425, 2006
  19. Fridman G, Shereshevsky A, Jost MM, Brooks AD, Fridman A, Gutsol A, Vasilets V, Friedman G, Plasma Chem. Plasma Process., 27(2), 163, 2007
  20. Babaeva NY, Kushner MJ, J. Phys. D-Appl. Phys., 43, 185206, 2010
  21. Kim JH, Park CJ, Kim CK, Korean Chem. Eng. Res., 57(3), 432, 2019
  22. Liang C, Qiu H, Han Y, Gu H, Song P, Wang L, Kong J, Cao D, Gu J, J. Mater. Chem. C, 7, 2725, 2019
  23. Huangfu Y, Liang C, Han Y, Qiu H, Song P, Wang L, Kong J, Gu J, Compos. Sci. Technol., 169, 70, 2019
  24. Huangfu Y, Ruan K, Qiu H, Lu Y, Liang C, Kong J, Gu J, Compos. Pt. A-Appl. Sci. Manuf., 121, 265, 2019
  25. Kang Y, Wang CL, Qiao YB, Gu JW, Zhang H, Peijs T, Kong J, Zhang GC, Shi XT, Biomacromolecules, 20(4), 1765, 2019
  26. Dai X, Du Y, Yang J, Wang D, Gu J, Li Y, Wang S, Xu BB, Kong J, Compos. Sci. Technol., 174, 27, 2019
  27. Ruan K, Guo Y, Tang Y, Zhang Y, Zhang J, He M, Kong J, Gu J, Compos. Commun., 10, 68, 2018
  28. Liu Y, Yao M, Zhang L, Niu Z, J. Energy Chem., 38, 199, 2019
  29. Zhao Y, Wang JJ, Ma CL, Cao LJ, Shao ZP, Chem. Eng. J., 370, 536, 2019
  30. Pedico A, Lamberti A, Gigot A, Fontana M, Bella F, Rivolo R, Cocuzza M, Pirri CF, ACS Appl. Energy Mater., 1, 4440, 2018
  31. Goh WL, Tan KT, Tse MS, Liu KY, Int. J. Mod. Phys. B, 16, 197, 2002
  32. O’Kelly JP, Mongey KF, Gobil Y, Torres J, Kelly PV, Crean GM, Microelectron. Eng., 50, 473, 2000
  33. Dulal SMSI, Kim TH, Rhee H, Sung JY, Kim CK, J. Alloy. Compd., 467, 370, 2009
  34. Kim TH, Dulal SMSI, Park CH, Chae HY, Kim CK, Surf. Coat. Technol., 202, 4861, 2008
  35. Baroch P, Saito N, Takai O, J. Phys. D-Appl. Phys., 41, 085207, 2008
  36. Schwabedissen A, Lacinski P, Chen X, Engemann J, Contrib. Plasma Phys., 47, 551, 2007
  37. Fujishima T, J. Int. Council Elec. Eng., 8, 99, 2018
  38. Bose D, Rauf S, Hash DB, Govindan TR, Meyyappan M, J. Vac. Sci. Technol. A, 22(6), 2290, 2004
  39. Itagaki N, Iwata S, Muta K, Yonesu A, Kawakami S, Ishii N, Kawai Y, Thin Solid Films, 435(1-2), 259, 2003
  40. Ahmed MW, Rahman MS, Choi S, Shaislamov U, Yang JK, Suresh R, Lee HJ, Appl. Sci. Converg. Technol., 26, 118, 2017
  41. Ohno N, Razzak MA, Ukai H, Takamura S, Uesugi Y, Plasma Fusion Res., 1, 028, 2006
  42. Xiao D, Cheng C, Shen J, Lan Y, Xie H, Shu X, Meng Y, Li J, Chu PK, J. Appl. Phys., 115, 033303, 2014
  43. http://physics.nist.gov/PhysRefData/ASD/index.html.
  44. Camacho JJ, Poyato JML, Diaz L, Santos M, J. Phys. B: At. Mol. Phys., 40, 4573, 2007