Issue
Korean Journal of Chemical Engineering,
Vol.36, No.8, 1305-1312, 2019
Biodegradation of tetrachloroethylene by a newly isolated aerobic Sphingopyxis ummariensis VR13
Chlorinated aliphatic solvents are major sources of groundwater and soil contamination. In this study, an aerobic bacterial strain, Sphingopyxis ummariensis VR13, which has been newly isolated from petrochemical wastewater sludge, was used for the dechlorination of PCE in relatively high concentrations. The addition of a co-substrate as glucose and yeast extract enhanced the dechlorination of PCE. An adaptation of the bacterial cells to PCE resulted in a significant increase in the PCE degradation yield (62.9-39.4%) at relatively high initial PCE concentrations (0.4-5 mM). The adapted cells achieved the highest biodegradation yield (64.8%) in 1.2mM. However, the maximum dechlorination percentage (41.6%) was measured in lower PCE concentration. The kinetic studies showed that PCE degradation was associated with the biomass growth because a higher removal of PCE (64.8%) occurred in a higher cell density. The degradation kinetics of PCE was properly fitted by Monod-like equation with the specific degradation rate of 7.2mmol PCE (g biomass) -1d -1, which was even faster than the reported anaerobic bacteria at this concentration. This strain can be used in the aerobic degradation of PCE.
[References]
  1. Doucette WJ, Chard JK, Fabrizius H, Crouch C, Petersen MR, Carlsen TE, Chars BK, Gorder K, Environ. Sci. Technol., 41, 2505, 2007
  2. Janulewicz PA, Killiany RJ, White RF, Martin BM, Winter MR, Weinberg JM, Winter M, Martin B, Aschengrau A, Neurotoxicol. Teratol., 38, 13, 2013
  3. Ye L, Fei L, Honghan C, Jinhua S, Yufan W, Acta Geolog. Sinica, 82, 911, 2008
  4. Tiehm A, Schmidt KR, Curr. Opin. Biotechnol., 22, 415, 2011
  5. Dong Y, Butler EC, Philp RP, Krumholz LR, Biodegradation, 22, 431, 2011
  6. Futagami T, Goto M, Furukawa K, Chem. Rec., 8, 1, 2008
  7. Doherty RE, Environ. Forensics, 1, 69, 2000
  8. Miguet M, Goetz V, Plantard G, Jaeger Y, Ind. Eng. Chem. Res., 54(40), 9813, 2015
  9. Linek V, Sinkule J, Janda V, Water Res., 32, 1264, 1998
  10. Gil A, Elmchaouri A, El Mouzdahir Y, Korili S, Adsorp. Sci. Technol., 33, 355, 2015
  11. Grzechulska-Damszel J, Grzeskowiak M, Przepiorski J, Morawski A, Int. J. Environ. Res., 8, 347, 2014
  12. Zheng F, Gao B, Sun Y, Shi X, Xu H, Wu J, Gao Y, Chem. Eng. J., 2016, 283, 595, 283
  13. Dolinova I, Strojsova M, Cernik M, Nemecek J, Machackova J, Sevcu A, Environ. Sci. Pollut. Res., 24, 13262, 2017
  14. Yoshikawa M, Zhang M, Toyota K, Water, Air, Soil Pollut., 228, 25, 2017
  15. Lee J, Lee TK, J. Microbiol. Biotechnol., 26, 120, 2016
  16. Mattes TE, Alexander AK, Coleman NV, FEMS Microbiol., 34, 445, 2010
  17. Ryoo D, Shim H, Canada K, Barbieri P, Wood TK, Nature Biotechnol., 18, 775, 2000
  18. Shim H, Ryoo D, Barbieri P, Wood TK, Appl. Microbiol. Biotechnol., 56(1-2), 265, 2001
  19. Yoshikawa M, Zhang M, Toyota K, Microb. Environ., 23, 188, 2017
  20. Tabernacka A, Zborowska E, Pogoda K, Zoladek M, Environ. Technol., 40(4), 470, 2019
  21. Pazarlioglu NK, Telefoncu A, Proc. Biochem., 40, 1807, 2005
  22. Gonzalez G, Herrera G, Garcia MT, Pena M, Bioresour. Technol., 80(2), 137, 2001
  23. Shokrollahzadeh S, Azizmohseni F, Golmohamad F, Adv. Environ. Sci. Technol., 1, 1, 2015
  24. Sedighi M, Zamir SM, Vahabzadeh F, J. Environ. Manage., 165, 53, 2016
  25. Yu J, Cai W, Cheng Z, Chen J, J. Environ. Sci., 26, 1108, 2014
  26. Aranda C, Godoy F, Becerra J, Barra R, Martinez M, Biodegradation, 14, 265, 2003
  27. Gaza S, Schmidt KR, Weigold P, Heidinger M, Tiehm A, Water Res., 151, 343, 2019
  28. Fathepure BZ, Boyd SA, J. Appl. Environ. Microbiol., 54, 2976, 1988
  29. Shen H, Sewell GW, Environ. Sci. Technol., 39, 9286, 2005
  30. Zhang Y, Tay JH, Biochem. Eng. J., 106, 1, 2016
  31. Li Y, Li B, Wang CP, Fan JZ, Sun HW, Int. J. Mol. Sci., 15(5), 9134, 2014
  32. Bhatt P, Kumar MS, Mudliar S, Chakrabarti T, Crit. Rev. Environ. Sci. Technol., 37, 165, 2007
  33. Landa AS, Sipkema EM, Weijma J, Beenackers A, Dolfing J, Janssen DB, J. Appl. Environ. Microbiol., 60, 3368, 1994
  34. Chang HL, Alvarezcohen L, Biotechnol. Bioeng., 45(5), 440, 1995
  35. Fan S, Scow KM, J. Appl. Environ. Microbiol., 59, 1911, 1993
  36. Humphries JA, Ashe AMH, Smiley JA, Johnston CG, Can. J. Microbiol., 51, 433, 2005
  37. Nijenhuis I, Andert J, Beck K, Kastner M, Diekert G, Richnow HH, J. Appl. Environ. Microbiol., 71, 3413, 2005
  38. Suyama A, Iwakiri R, Kai K, Tokunaga T, Sera N, Furukawa K, Biosci. Biotechnol. Biochem., 65, 1474, 2001
  39. Chen YM, Lin TF, Huang C, Lin JC, Chemosphere, 72, 1671, 2008
  40. DiSpirito AA, Gulledge J, Shiemke AK, Murrell JC, Lidstrom ME. Krema CL, Biodegradation, 2, 151, 1991
  41. Lontoh S, DiSpirito AA, Semrau JD, Arch. Microbiol., 171, 301, 1999
  42. Shukla AK, Vishwakarma P, Upadhyay SN, Tripathi AK, Prasana HC, Dubey SK, Bioresour. Technol., 100(9), 2469, 2009
  43. Shukla AK, Vishwakarma P, Singh RS, Upadhyay SN, Dubey SK, Bioresour. Technol., 101(7), 2126, 2010
  44. Li H, Zhang SY, Wang XL, Yang J, Gu JD, Zhu RL, Wang P, Lin KF, Liu YD, Environ. Technol., 36, 667, 2015
  45. Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, Murrell JC, Nat. Protoc., 2, 860, 2007
  46. Yoshikawa M, Zhang M, Kurisu F, Toyota K, Water, Air, Soil Pollut., 228, 418, 2017