Issue
Korean Journal of Chemical Engineering,
Vol.36, No.8, 1291-1297, 2019
NH3-induced removal of NOx from a flue gas stream by silent discharge ozone generation in a double reactor system
NOx, a generic term for the nitrogen oxides generated from combustion in the presence of nitrogen, is a serious threat to human health. This study examined the removal of NOx using ammonia (NH3) and ozone produced using a silent discharge method. The effects of temperature and residence time on NOx removal with NH3 injection in a double reactor system were investigated. An increase in temperature resulted in higher levels of O3 decomposition, whereas the maximum particle formation in the form of ammonium nitrate (NH4NO3) was achieved when both reactors were kept at 180 °C. NH3 and O3 injection in large quantities and NO in smaller amounts with a residence time of 10.2 s resulted in the maximum particulate formation. In contrast, when an excess of NH3 was supplied, it resulted in N2O formation due to the formation of NH2 radicals generated from a reaction of NO2 with NH3. In addition, 100% NO removal was achieved regardless of the residence time. Kinetic simulations indicated the possibility of moisture being the limiting reactant.
[References]
  1. Xiong Y, Zeng Y, Cai W, Zhang S, Ding J, Zhong Q, J. Ind. Eng. Chem., 65, 380, 2018
  2. Long XI, Duan BB, Cao HX, Jia ML, Wu LA, J. Ind. Eng. Chem., 62, 217, 2018
  3. Wang H, Li X, Chen P, Chen M, Zheng X, Chem. Commun., 49, 9353, 2013
  4. Roy S, Baiker A, Chem. Rev., 109(9), 4054, 2009
  5. Fan Y, Ling W, Huang B, Dong L, Yu C, Xi H, J. Ind. Eng. Chem., 56, 108, 2017
  6. Shelef M, McCabe RW, Catal. Today, 62(1), 35, 2000
  7. Garin F, Appl. Catal. A: Gen., 222(1-2), 183, 2001
  8. Tsukamoto S, Namihira T, Pulsed Power Conference, Monterey, CA, 1330 (1999).
  9. Chae JO, J. Electrostatics, 57, 251, 2003
  10. Jo JO, Mok YS, Appl. Chem. Eng., 29, 92, 2018
  11. Fujishima H, Takekoshi K, Kuroki T, Tanaka A, Otsuka K, Okubo M, Appl. Energy, 111, 394, 2013
  12. Kuroki T, Takahashi M, Okubo M, Yamamoto T, IEEE Trans. Ind. Appl., 38, 1204, 2002
  13. Tsukamoto S, Namihira T, Wang D, Katsuki S, Akiyama H, Nakashima E, Digest of Technical Papers 12th IEEE International Pulsed Power Conference (Cat No99CH36358), 2, 1330 (1999).
  14. Lin H, Gao X, Luo ZY, Guan SP, Cen KF, Huang Z, J. Environ. Sci., 16, 462, 2004
  15. Mizuno A, Shimizu R, Chakrabarti A, Dascalescu L, Furuta S, IEEE Trans. Ind. Appl., 31, 957, 1995
  16. Chae JO, J. Electrostatics, 57, 251, 2003
  17. Yamamoto Y, Yamamoto H, Takada D, Kuroki T, Fujishima H, Okubo M, Ozone: Sci. Eng., 38, 211, 2016
  18. Park HW, Uhm SH, Appl. Chem. Eng., 28(6), 607, 2017
  19. J. S. Cha, J.W. Park, B. Jeong, H.D. Kim, S. S. Park and M.C. Shin, Appl. Chem. Eng., 28, 576, 2017
  20. Kazuo O, Hironobu K, Kohei I, Ibaraki H, J. Appl. Phys., 95, 3928, 2004
  21. Guan B, Lin H, Cheng Q, Huang Z, Ind. Eng. Chem. Res., 50(9), 5401, 2011
  22. Cha MS, Song YH, Lee JO, Kim SJ, nt. J. Plasma Environ. Sci. Technol., 1, 28, 2007
  23. Kitayama J, Kuzumoto M, J. Phys. D-Appl. Phys., 30, 2453, 1997
  24. Nishimura K, Suzuki N, J. Nuclear Sci. Technol., 18, 878, 1981
  25. Atkinson R, Baulch DL, Cox RA, Crowley JN, Hampson RF, Hynes RG, Atmos. Chem. Phys., 4, 1461, 2004
  26. Kim DJ, Choi Y, Kim KS, Plasma Chem. Plasma Process., 21(4), 625, 2001
  27. Feick G, Hainer RM, J. Am. Chem. Soc., 76, 5860, 1954