Issue
Korean Journal of Chemical Engineering,
Vol.36, No.8, 1267-1273, 2019
Synergistic effect of blended primary and secondary amines functionalized onto the silica on CO2 capture performance
Amine-functionalized silica sorbents were synthesized by blending (3-aminopropyl)trimethoxysilane (1NSP) and [3-(methylamino)propyl]trimethoxysilane (1NS-S) of varying proportions and incorporating it in the support via incipient wetness technique. Adsorption characteristics were examined at a design adsorption temperature of 30 °C. The blended amine adsorbents exhibited higher CO2 adsorption capacity (5.6-6.4 wt%) and CO2/N efficiency (0.47- 0.48) than 1NS-P and 1NS-S. Among the blended amine adsorbents synthesized in this work, 1NS-PS-50, which has 50% primary amine and 50% secondary amine, is the most ideal for post-combustion CO2 capture application because it has high CO2 adsorption capacity, high CO2/N efficiency, and better performance than its diamine counterpart, N- [3-(trimethoxysilyl)propyl]ethylenediamine.
[References]
  1. Spigarelli BP, Kawatra SK, J. CO2. Util., 1, 69, 2013
  2. Aaron D, Tsouris C, Sep. Sci. Technol., 40(1-3), 321, 2005
  3. Olajire AA, Energy, 35(6), 2610, 2010
  4. Huaman R, Lourenco S, J. Fundam. Renew. Energy Appl., 5, 1, 2015
  5. Sreedhar I, Nahar T, Venugopal A, Srinivas B, Renew. Sust. Energ. Rev., 76, 1080, 2017
  6. Sanz-Perez E, Olivares-Marin M, Arencibia A, Sanz R, Calleja G, Maroto-Valer M, Int. J. Greenh. Gas Control, 17, 366, 2013
  7. Bezerra DP, Oliveira RS, Vieira RS, Cavalcante CL, Azevedo DCS, Adsorption, 17, 235, 2011
  8. Chen C, Zhang S, Row KH, Ahn WS, J. Energy Chem., 26, 868, 2017
  9. Zhao B, Liu FZ, Cui Z, Liu CJ, Yue HR, Tang SY, Liu YY, Lu HF, Liang B, Appl. Energy, 185, 362, 2017
  10. Ahmed S, Ramli A, Yusup S, Int. J. Greenh. Gas Control, 51, 230, 2016
  11. Bruder P, Svendsen HF, Energy Procedia, 23, 45, 2012
  12. Chen CH, Shimon D, Lee JJ, Didas SA, Mehta AK, Sievers C, Jones CW, Hayes SE, Environ. Sci. Technol., 51, 6553, 2017
  13. Gangarapu S, Marcelis ATM, Zuilhof H, ChemPhysChem., 14, 3936, 2013
  14. Madden D, Curtin T, Microporous Mesoporous Mater., 228, 310, 2016
  15. Srisang W, Pouryousefi F, Osei PA, Decardi-Nelson B, Akachuku A, Tontiwachwuthikul P, Idem R, Int. J. Greenh. Gas Control, 69, 52, 2018
  16. Yang Q, Bown M, Ali A, Winkler D, Puxty G, Attalla M, Energy Procedia, 1, 955, 2009
  17. Nwaoha C, Supap T, Idem R, Saiwan C, Tontiwachwuthikul P, AL-Marri M, Benamor A, Petroleum, 3, 10, 2017
  18. Perinu C, Bernhardsen IM, Svendsen HF, Jens KJ, Energy Procedia, 114, 1949, 2017
  19. Celedonio JM, Park JH, Ko YS, Res. Chem. Intermed., 42, 141, 2015
  20. Celedonio JM, Pacia RM, Ko YS, Catal. Today, 303, 55, 2017
  21. Park JH, Celedonio JM, Seo H, Park YK, Ko YS, Catal. Today, 265, 68, 2016
  22. Sanz-Perez ES, Murdock CR, Didas SA, Jones CW, Chem. Rev., 116, 11840, 2017
  23. Shimon D, Chen CH, Lee JJ, Didas SA, Sievers C, Jones CW, Hayes SE, Environ. Sci. Technol., 52, 1488, 2018
  24. Ripin DH, Evans DA, PKa’s of CH Bonds at Heteroatom Substituted Carbon & References (2014).
  25. Fernandes D, Conway W, Burns R, Lawrance G, Maeder M, Puxty G, J. Chem. Thermodyn., 54, 183, 2012
  26. Heydari-Gorji A, Sayari A, Ind. Eng. Chem. Res., 51(19), 6887, 2012
  27. Srikanth CS, Chuang SSC, J. Phys. Chem. C., 117, 9196, 2013
  28. Choi WS, Min KM, Kim CH, Ko YS, Jeon JW, Seo HW, Park YK, Choi MK, Nat. Commun., 7, 12640, 2016