Issue
Korean Journal of Chemical Engineering,
Vol.36, No.8, 1243-1248, 2019
Effect of precipitation on physico-chemical and catalytic properties of Cu-Zn-Al catalyst for water-gas shift reaction
To investigate the effect of precipitation on physico-chemical and catalytic properties of Cu-Zn-Al catalyst, the pH value and injection rate in the precipitation process were systematically changed, and the water-gas shift reaction was carried out. The Cu-Zn-Al catalyst showed the highest CO conversion when the optimized synthesis parameters (i.e., pH=10-10.5 and injection rate=30ml/min) were employed. This is mainly due to the enhanced physicochemical properties such as a high Brunauer-Emmett-Teller surface area, small crystallite size, high Cu dispersion, and easier reducibility.
[References]
  1. Nishida K, Atake I, Li D, Shishido T, Oumi Y, Sano T, Takehira K, Appl. Catal. A: Gen., 337(1), 48, 2008
  2. Shishido T, Yamamoto M, Li DL, Tian Y, Morioka H, Honda M, Sano T, Takehira K, Appl. Catal. A: Gen., 303(1), 62, 2006
  3. Fu W, Bao Z, Ding W, Chou K, Li Q, Catal. Commun., 12, 505, 2011
  4. Simson G, Prasetyo E, Reiner S, Hinrichsen O, Appl. Catal. A: Gen., 450, 1, 2013
  5. Kowalik P, Prochniak W, Konkol M, Borowiecki T, Appl. Catal. A: Gen., 423-424, 15, 2012
  6. Kowalik P, Prochniak W, Borowiecki T, Catal. Today, 176(1), 144, 2011
  7. Lima AAG, Nele M, Moreno EL, Andrade HMC, Appl. Catal. A: Gen., 171(1), 31, 1998
  8. Xiao S, Zhang YF, Gao P, Zhong LS, Li XP, Zhang ZZ, Wang H, Wei W, Sun YH, Catal. Today, 281, 327, 2017
  9. Shen JP, Song CS, Catal. Today, 77(1-2), 89, 2002
  10. Guo Y, Meyer-Zaike W, Muhler M, Vukojevi S. Epple M, Eur. J. Inorg. Chem., 2006, 4774, 2006
  11. Saedy S, Haghighi M, Amirkhosrow M, Particuology, 10, 729, 2012
  12. Behrens M, Brennecke D, Girgsdies F, Kissner S, Trunschke A, Nasrudin N, Zakaria S, Idris NF, Abd Hamid SB, Kniep B, Fischer R, Busser W, Muhler M, Schlogl R, Appl. Catal. A: Gen., 392(1-2), 93, 2011
  13. Budiman A, Ridwan M, Kim SM, Choi JW, Yoon CW, Ha JM, Suh DJ, Suh YW, Appl. Catal. A: Gen., 462-463, 220, 2013
  14. Kuhl S, Friedrich M, Armbruster M, Behrens M, J. Mater. Chem., 22, 9632, 2012
  15. Thomas J, Thomas N, Girgsdies F, Beherns M, Huang X, Sudheesh VD, Sebastian V, New J. Chem., 41, 7356, 2017
  16. Jang WJ, Kim HM, Shim JO, Yoo SY, Jeon KW, Na HS, Lee YL, Jeong DW, Bae JW, Nah IW, Green Chem., 20, 1621, 2018
  17. Li JL, Inui T, Appl. Catal. A: Gen., 137(1), 105, 1996
  18. Jung H, Yang DR, Joo OS, Jung KD, Bull Korean Chem. Soc., 31, 1241, 2010
  19. Baltes C, Vukojevic S, Schuth F, J. Catal., 258(2), 334, 2008
  20. Bems B, Schur M, Dassenoy A, Junkes H, Herein D, Schlogl R, Chem. Eur. J., 9, 2039, 2003
  21. Na HS, Shim JO, Jang WJ, Jeon KW, Kim HM, Lee YL, Lee DW, Yoo SY, Bae JW, Rode CV, Roh HS, Catal. Today, 309, 83, 2018
  22. Allahyari S, Haghighi M, Ebadi A, Saeedi HQ, J. Power Sources, 272, 929, 2014
  23. Ajamein H, Haghighi M, Ceram. Int., 42, 17978, 2016
  24. Ajamein H, Haghighi M, Alaei S, Mater. Res. Bull., 102, 142, 2018
  25. Allahyari S, Haghighi M, Ebadi A, Hosseinzadeh S, Energy Conv. Manag., 83, 212, 2014
  26. Na HS, Ahn CI, Jha A, Park KS, Jang WJ, Shim JO, Jeong DW, Roh HS, Bae JW, RSC Adv., 6, 52754, 2016
  27. Jeong DW, Na HS, Shim JO, Jang WJ, Roh HS, Jung UH, Yoon WL, Int. J. Hydrog. Energy, 39(17), 9135, 2014
  28. Jeong DW, Jang WJ, Shim JO, Han WB, Roh HS, Jung UH, Yoon WL, Renew. Energy, 65, 102, 2014
  29. Na HS, Shim JO, Ahn SY, Jang WJ, Jeon KW, Kim HM, Lee YL, Kim KJ, Roh HS, Int. J. Hydrog. Energy, 43(37), 17718, 2018
  30. Na HS, Jeong DW, Jang WJ, Shim JO, Roh HS, Int. J. Hydrog. Energy, 40(36), 12268, 2015
  31. Shim JO, Hong YJ, Na HS, Jang WJ, Kang YC, Roh HS, ACS Appl. Mater. Interfaces, 8, 17239, 2016
  32. Jeon KW, Shim JO, Jang WJ, Lee DW, Na HS, Kim HM, Lee YL, Yoo SY, Roh HS, Jeon BH, Bae JW, Ko CH, Renew. Energy, 131, 144, 2019
  33. Lee YL, Jha A, Jang WJ, Shim JO, Jeon KW, Na HS, Kim HM, Lee DW, Yoo SY, Jeon BH, Bae JW, Roh HS, Top Catal., 60, 721, 2017
  34. Amirsalari A, Shayesteh SF, Superlattices Microstruct., 82, 507, 2015
  35. Amin G, Asif M, Zainelabdin A, Zaman S, Nur O, Willander M, J. Nanomaterials, 2011, 1, 2011
  36. Chu YY, Wang ZB, Jiang ZZ, Gu DM, Yin GP, Fuel Cells, 10, 914, 2010
  37. Wang Q, Cui M, Hou Y, Zhong Q, Yue M, Huang X, J. Alloy. Compd., 712, 431, 2017
  38. Sun YZ, Ma L, Zhou BB, Gao P, Int. J. Hydrog. Energy, 37(3), 2336, 2012
  39. Guo PJ, Chen LF, Yang QY, Qiao MH, Li H, Li HX, Xu HL, Fan KN, Int. J. Hydrog. Energy, 34(5), 2361, 2009
  40. Yao SY, Xu WQ, Johnston-Peck AC, Zhao FZ, Liu ZY, Luo S, Senanayake SD, Martinez-Arias A, Liu WJ, Rodriguez JA, Phys. Chem. Chem. Phys., 16, 17183, 2014
  41. Jeong DW, Jang WJ, Shim JO, Han WB, Jeon KW, Seo YC, Roh HS, Gu JH, Lim YT, J. Mater. Cycles Waste Manage., 16, 650, 2014
  42. Gomez-Cuaspud JA, Schmal M, Int. J. Hydrog. Energy, 38(18), 7458, 2013
  43. Yang XH, Wang W, Xiong JL, Chen L, Ma Y, Int. J. Hydrog. Energy, 40(36), 12604, 2015
  44. Wang Y, Li ZB, Demopoulos GP, J. Cryst. Growth, 310(6), 1220, 2008
  45. Kramer E, Podurgiel J, Wei M, Mater. Lett., 131, 145, 2014
  46. Yahiro H, Murawaki K, Saiki K, Yamamoto T, Yamaura H, Catal. Today, 126(3-4), 436, 2007