Issue
Korean Journal of Chemical Engineering,
Vol.36, No.7, 1201-1207, 2019
Development of an advanced hybrid process coupling TiO2 photocatalysis and zeolite-based adsorption for water and wastewater treatment
We present an advanced hybrid process coupling a fixed-bed photocatalysis reactor with the TiO2 photocatalyst film coated on microstructured α-Al2O3 hollow fibers (AlHF) under UV exposure, with a second fixed-bed reactor where the zeolite-based adsorbent is fixed onto AlHF support for water and wastewater treatment. The physicochemical properties of both coated films were investigated by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX). The sequential activity of the dual fixed bed reactor was overall evaluated by examining the degradation of 20 ppm Methylene Blue (MB), 1 ppm Iron and 0.04 ppm Arsenic solution as a general model of a complex aqueous solution containing not only an organic pollutant but also heavy metal and toxic cations. The results show that the proposed hybrid process by coupling two processes together could remove MB, Fe (II), and As (III) effectively, and the removal rates reached nearly 90%, 30%, and 70%, respectively, in 1 hour. These excellent results using the UV-TiO2/zeolite-based adsorbent combined process could be attributed to a synergistic effect between photocatalysis and adsorption process.
[References]
  1. Hashimoto K, Irie H, Fujishima A, Jpn. J. Appl. Phys., 44, 8269, 2005
  2. Wu CH, Chern JM, Ind. Eng. Chem. Res., 45(19), 6450, 2006
  3. Lee HJ, Park YG, Lee SH, Park JH, Korean Chem. Eng. Res., 56(2), 156, 2018
  4. Kim SH, Jeong SG, Na SE, Kim SY, Ju CS, Korean Chem. Eng. Res., 51(2), 195, 2013
  5. Jeong SH, Kim JK, Kim BS, Shim SH, Lee BT, Vacuum, 76, 507, 2004
  6. Lobl P, Huppertz M, Mergel D, Thin Solid Films, 251(1), 72, 1994
  7. Yamagishi M, Kuriki S, Song PK, Shigesato Y, Thin Solid Films, 442(1-2), 227, 2003
  8. Lien SY, Wuu DS, Yeh WC, Liu JC, Sol. Energy Mater. Sol. Cells, 90(16), 2710, 2006
  9. Guillard C, Beaugiraud B, Dutriez C, Herrmann JM, Jaffrezic H, Jaffrezic-Renault N, Lacroix M, Appl. Catal. B: Environ., 39(4), 331, 2002
  10. Hur JY, Lee HI, Park YK, Joo OS, Bae GN, Kim JM, Korean Chem. Eng. Res., 44(4), 399, 2006
  11. Zhang XW, Lei LC, Appl. Surf. Sci., 254(8), 2406, 2008
  12. Ding Z, Hu XJ, Yue PL, Lu GQ, Greenfield PF, Catal. Today, 68(1-3), 173, 2001
  13. Byun D, Jin Y, Kim B, Lee JK, Park D, J. Hazard. Mater., 73(2), 199, 2000
  14. Jung SC, Kim SC, Seo SG, Korean Chem. Eng. Res., 39, 385, 2001
  15. Magnone E, Kim MK, Lee HJ, Park JH, Ceram. Int., 45, 3359, 2019
  16. El-Bayaa AA, Badawy NA, AlKhalik EA, J. Hazard. Mater., 170(2-3), 1204, 2009
  17. Park SH, Park SM, An J, Park CG, Desalination Water Treat., 123, 150, 2018
  18. Shi WY, Shao HB, Li H, Shao MA, Du S, J. Hazard. Mater., 170(1), 1, 2009
  19. Sadowska K, Gora-Marek K, Datka J, J. Phys. Chem.0 C, 117, 9237, 2013
  20. Chang CC, Teixeira AR, Li C, Dauenhauer PJ, Fan W, Langmuir, 29(45), 13943, 2013
  21. Huang A, Wang N, Caro J, Microporous Mesoporous Mater., 164, 294, 2012
  22. Lu L, Zhang Y, Xiao P, Zhang X, Yang Y, Environ. Eng. Sci., 27, 281, 2010
  23. Xu C, Rangaiah GP, Zhao XS, Ind. Eng. Chem. Res., 53(38), 14641, 2014
  24. Yu W, Liu XJ, Pan LK, Li JL, Liu JY, Zhang J, Li P, Chen C, Sun Z, Appl. Surf. Sci., 319, 107, 2014
  25. Dariania RS, Esmaeili A, Mortezaali A, Dehghanpour S, Optik, 127, 7143, 2016
  26. Taghvaei H, Farhadian M, Davari N, Maazi S, Adv. Environ. Technol., 4, 205, 2017
  27. Magnone E, Lee HJ, Che JW, Park JH, J. Ind. Eng. Chem., 42, 19, 2016
  28. Kim SW, Kang M, Choung SJ, J. Ind. Eng. Chem., 11(3), 416, 2005
  29. Manocha SM, Sadhana, 28, 335, 2003
  30. Simsek EB, Ozdemir E, Beker U, Chem. Eng. J., 220, 402, 2013
  31. Mohan D, Pittman CU, J. Hazard. Mater., 142(1-2), 1, 2007
  32. Setoyama N, Suzuki T, Kaneko K, Carbon, 36, 1459, 1998