Issue
Korean Journal of Chemical Engineering,
Vol.36, No.7, 1193-1200, 2019
AgNi@ZnO nanorods grown on graphene as an anodic catalyst for direct glucose fuel cells
Nano carbon-semiconductor hybrid materials such as graphene and zinc oxide (ZnO) have been vigorously explored for their direct electron transfer properties and high specific surface areas. We fabricated a three-dimensional anodic electrode catalyst nanostructure for a direct glucose fuel cell (DGFC) utilizing two-dimensional monolayer graphene and one-dimensional ZnO nanorods, which accommodate silver/nickel (Ag/Ni) nanoparticle catalyst. Glucose, as an unlimited and safe natural energy resource, has become the most popular fuel for energy storage. Ag and Ni nanoparticles, having superior catalytic activities and anti-poisoning effect, respectively, demonstrate a 73-times enhanced cell performance (550 μW cm-2 or 8mW mg-1) when deposited on zinc oxide nanorods with a small amount of ~0.069 mg in 0.5M of glucose and 1M of KOH solution at 60 °C. This three-dimensional anodic electrode catalyst nanostructure presents promise to open up a new generation of fuel cells with non-Pt, low mass loading of catalyst, and 3D nanostructure electrodes for high electrochemical performances.
[References]
  1. Chaudhuri SK, Lovley DR, Nat. Biotechnol., 21, 1229, 2003
  2. Van Wyk JP, TRENDS in Biotechnol., 19, 172, 2001
  3. Fujiwara N, Siroma Z, Ioroi T, Yasuda K, J. Power Sources, 164(2), 457, 2007
  4. Fujiwara N, Yamazaki SI, Siroma Z, Ioroi T, Yasuda K, Electrochem. Commun., 8, 720, 2006
  5. Chen J, Zheng H, Kang J, Yang F, Cao Y, Xiang M, RSC Adv., 7, 3035, 2017
  6. Xu S, Minteer SD, ACS Catal., 2, 91, 2012
  7. Zhao Y, Fan LZ, Gao DM, Ren JL, Hong B, Electrochim. Acta, 145, 159, 2014
  8. Yang YL, Liu XH, Hao MQ, Zhang PP, Int. J. Hydrog. Energy, 40(34), 10979, 2015
  9. Hsieh SH, Hsu MC, Liu WL, Chen WJ, Appl. Surf. Sci., 277, 223, 2013
  10. Tiwari JN, Pan FM, Chen TM, Tiwari RN, Lin KL, J. Power Sources, 195(3), 729, 2010
  11. Basu D, Basu S, Int. J. Hydrog. Energy, 37(5), 4678, 2012
  12. Eshghi A, Kheirmand M, Iranian J. Hydrogen Fuel Cell, 3, 11, 2016
  13. Hui-Fang C, Jian-Shan Y, Xiao L, Wei-De Z, Fwu-Shan S, Nanotechnology, 17, 2334, 2006
  14. Zhu JL, He GQ, Liang LZ, Wan Q, Shen PK, Electrochim. Acta, 158, 374, 2015
  15. Basu D, Basu S, Int. J. Hydrog. Energy, 37(5), 4678, 2012
  16. Apblett CA, Ingersoll D, Sarangapani S, Kelly M, Atanassov P, J. Electrochem. Soc., 157(1), B86, 2010
  17. Fujiwara N, Yamazaki SI, Siroma Z, Ioroi T, Senoh H, Yasuda K, Electrochem. Commun., 11, 390, 2009
  18. Elouarzaki K, Holzinger M, Le Goff A, Thery J, Marks R, Cosnier S, J. Mater. Chem. A, 4, 10635, 2016
  19. Tsang CHA, Leung D, Solid State Sci., 71, 123, 2017
  20. Zhao Y, Liu X, Wang X, Zhang P, Shi J, Int. J. Hydrog. Energy, 42, X29863, 2017
  21. Firdosy SA, Ravi VA, Valdez TI, Kisor A, Narayan SR, NASA’s Jet Propulsion Laboratory, Pasadena, California (2013).
  22. Gao MY, Liu XH, Irfan M, Shi JF, Wang X, Zhang PP, Int. J. Hydrog. Energy, 43(3), 1805, 2018
  23. Chen JY, Zhao CX, Zhi MM, Wang KW, Deng LL, Xu G, Electrochim. Acta, 66, 133, 2012
  24. Cho B, Yoon J, Hahm MG, Kim DH, Kim AR, Kahng YH, Park SW, Lee YJ, Park SG, Kwon JD, J. Mater. Chem. C, 2, 5280, 2014
  25. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y, Electroanalysis, 22, 1027, 2010
  26. Tan YB, Lee JM, J. Mater. Chem. A, 1, 14814, 2013
  27. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V, Science, 347, 124650, 2015
  28. Choi HJ, Jung SM, Seo JM, Chang DW, Dai L, Baek JB, Nano Energy, 1, 534, 2012
  29. Bonaccorso F, Sun Z, Hasan T, Ferrari A, Nat. Photonics, 4, 611, 2010
  30. Antolini E, Appl. Catal. B: Environ., 123, 52, 2012
  31. Byon HR, Suntivich J, Shao-Horn Y, Chem. Mater., 23, 421, 2011
  32. Qian W, Hao R, Zhou J, Eastman M, Manhat BA, Sun Q, Goforth AM, Jiao J, Carbon, 52, 595, 2013
  33. Baker H, In ASM Handbook, Vol. 3 Alloy Phase Diagrams, ASM Int. Mater., 1742 (1992).
  34. McLellan RB, Scripta Metallurgica, 3, 389, 1969
  35. Qu L, Liu Y, Baek JB, Dai L, ACS Nano, 4, 1321, 2010
  36. Xia C, Qiao Z, Feng C, Kim JS, Wang B, Zhu B, Materials, 11, 40, 2018
  37. Xia C, Qiao Z, Shen LP, Liu XQ, Cai YX, Xu Y, Qiao JL, Wang H, Int. J. Hydrog. Energy, 43(28), 12825, 2018
  38. Hao W, Mi Y, RSC Adv., 6, 50201, 2016
  39. Wang C, Chen W, Han C, Wang G, Tang B, Tang C, Wang Y, Zou W, Zhang XA, Qin S, Scientific Reports, 4, 4537, 2014
  40. Kim SM, Hsu A, Lee YH, Dresselhaus M, Palacios T, Kim KK, Kong J, Nanotechnology, 24, 365602, 2013
  41. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J, Nano Lett., 9, 30, 2009
  42. Ferrari AC, Solid State Commun., 143, 47, 2007
  43. Ferrari AC, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K, Roth S, Phys. Rev. Lett., 97, 187401, 2006
  44. Malard L, Pimenta M, Dresselhaus G, Dresselhaus M, Phys. Reports, 473, 51, 2009
  45. Poncharal P, Ayari A, Michel T, Sauvajol JL, Phys. Rev. B, 78, 113407, 2008
  46. Zhao Y, Li W, Pan L, Zhai D, Wang Y, Li L, Cheng W, Yin W, Wang X, Xu JB, Shi Y, Scientific Reports, 6, 32327, 2016
  47. Kim YJ, Yoon A, Kim M, Yi GC, Liu C, Nanotechnology, 22, 245603, 2011
  48. Quan Q, Lin X, Zhang N, Xu YJ, Nanoscale, 9, 2398, 2017
  49. Ching KL, Li G, Ho YL, Kwok HS, CrystEngComm, 18, 779, 2016
  50. Fleischmann M, Korinek K, Pletcher D, J. Chem. Soc., 7, 1396, 1972
  51. Fleischmann M, Korinek K, Pletcher D, J. Electroanal. Chem. Interfacial Electrochem., 31, 39, 1971
  52. Zhao C, Shao C, Li M, Jiao K, Talanta, 71, 1769, 2007
  53. Nguyen TL, Kim DS, Hur J, Park MS, Yoon S, Kim IT, J. Power Sources, 389, 28, 2018
  54. Liu Y, Zhang A, Shen C, Liu Q, Cao X, Ma Y, Chen L, Lau C, Chen TC, Wei F, Zhou C, ACS Nano, 11, 5530, 2017
  55. Chaitoglou S, Bertran E, J. Mater. Sci., 52(13), 8348, 2017