Issue
Korean Journal of Chemical Engineering,
Vol.36, No.7, 1172-1183, 2019
Fabrication of optimally configured layers of SWCNTs, gold nanoparticles, and glucose oxidase on ITO electrodes for high-power enzymatic biofuel cells
We designed an enzymatic biofuel cell (EFC) that utilizes indium tin oxide (ITO) electrodes, and sequential deposition of single-walled carbon nanotube (SWCNT) and gold nanoparticle (AuNP) layers on the electrodes to enhance their electron transfer. Cyclic voltammograms of the SWCNT-modified ITO electrodes showed higher peak currents compared to those of the bare ITO electrodes. Immobilization of glucose oxidase (GOD) on SWCNT-modified ITO electrodes increased their electron transfer resistance by a factor of ten, which could be mitigated by incorporating an AuNP layer between the GOD and SWCNT layers. The single-layer GOD generated higher current than the doubled-layer GOD, with higher specific activity. The assembled EFC featured SWCNT-modified ITO electrodes with sequential layers of immobilized AuNPs and GOD (anode), and with a single layer of immobilized bilirubin oxidase (BOD) (cathode). The cathode performance was further improved by the presence of AuNPs between the BOD and SWCNTs on cathode. The enhanced electron transfer kinetics and enzymatic activity observed for SWCNT/AuNPmodified ITO electrodes resulted in a maximum power density of 38.2±2.0 μW/cm2 at 0.57±0.03 V of a cell voltage.
[References]
  1. Cosnier S, Goff AL, Holzinger M, Electrochem. Commun., 38, 19, 2014
  2. Zhong ZY, Qian L, Tan Y, Wang G, Yang L, Hou CT, Liu AH, J. Electroanal. Chem., 823, 723, 2018
  3. Scherbahn V, Putze MT, Dietzel B, Heinlein T, Schneider JJ, Lisdat F, Biosens. Bioelectron., 61, 631, 2014
  4. Krikstolaityte V, Lamberg P, Toscano MD, Silow M, Eicher-Lorka O, Ramanavicius A, Niaura G, Abariute L, Ruzgas T, Shleev S, Fuel Cells, 14, 792, 2014
  5. Zayats M, Willner B, Willner I, Electroanalysis, 20, 583, 2008
  6. Zebda A, Gondran C, Goff AL, Holzinger M, Cinquin P, Cosnier S, Nat. Commun., 2, 370, 2011
  7. Falk M, Blum Z, Shleev S, Electrochim. Acta, 82, 191, 2012
  8. Zhao M, Gao Y, Sun J, Gao F, Anal. Chem., 87, 2615, 2015
  9. Yehezkeli O, Tel-Vered R, Raichlin S, Willner I, ACS Nano, 5, 2385, 2011
  10. Zebda A, Cosnier S, Alcaraz JP, Holzinger M, LeGoff A, Gondron C, Boucher F, Giroud F, Gorgy K, Lamraoui H, Cinquin P, Sci. Rep., 3, 1516, 2013
  11. Yu EH, Scott K, Energies, 3, 23, 2010
  12. Heller A, Curr. Opin. Chem. Biol., 10, 664, 2006
  13. Mano N, Mao F, Heller A, Chembiochem, 5, 1703, 2004
  14. Kwon CH, Lee SH, Choi YB, Lee JA, Kim SH, Kim HH, et al., Nat. Commun., 5, 3928, 2014
  15. Christwardana M, Kim KJ, Kwon Y, Sci. Rep., 6, 30128, 2016
  16. Yang W, Wang J, Zhao S, Sun Y, Sun C, Electrochem. Commun., 8, 665, 2006
  17. Zhang J, Feng M, Tachikawa H, Biosens. Bioelectron., 22, 3036, 2007
  18. Wang X, Kim SB, Khang D, Kim HH, Kim CJ, Biochem. Eng. J., 112, 20, 2016
  19. Fu L, Yu AM, Rev. Adv. Mater. Sci., 36, 40, 2014
  20. Aziz MA, Yang H, Bull. Korean Chem. Soc., 28, 1171, 2007
  21. Choi CH, Margraves CH, Jun SI, English AE, Rack PD, Kihm KD, Sensors, 8, 3257, 2008
  22. Kalaskar DM, Demoustier-Champagne S, Dupont-Gillain CC, Colloids Surf. B: Biointerfaces, 111, 134, 2013
  23. Aziz MA, Park S, Jon S, Yang H, Chem. Commun., 2610 (2007).
  24. Geddes LA, Roeder R, Ann. Biomed. Eng., 31, 879, 2003
  25. Exley C, Environ. Sci.: Process Impacts, 15, 1807, 2013
  26. Peters R, Walshe JM, Proc. R. Soc. London B: Biol. Sci., 166, 273, 1966
  27. Yeung SW, Lee TMH, Cai H, Hsing IM, Nucl. Acids Res., 34, e118, 2006
  28. Gonzalez.-Arribas E, Bobrowski T, Bari CD, Sliozberg K, Ludwig R, Toscano MD, Lacey ALD, Pita M, Schuhmann W, Shleev S, Biosens. Bioelectron., 97, 46, 2017
  29. Ayato Y, Sugimoto W, ECS Transact., 66, 29, 2015
  30. Bobrowski T, Arribas EG, Ludwig R, Toscano MD, Shleev S, Schuhmann W, Biosens. Bioelectron., 101, 84, 2018
  31. Pichardo S, Gutierrez-Praena D, Puerto M, Sanchez E, Grilo A, Camean AM, Jos A, Toxycol. in Vitro, 26, 672, 2012
  32. Jos A, Pichardo S, Puerto M, Sanchez E, Grilo A, Camean AM, Toxycol. in Vitro, 23, 1419, 2009
  33. Gregg BA, Heller A, J. Phys. Chem., 95, 5970, 1991
  34. Kim HH, Mano N, Zhang XC, Heller A, J. Electrochem. Soc., 150(2), A209, 2003
  35. Timur S, Haghighi B, Tkac J, Pazarhoglu N, Telefoncu A, Gorton L, Bioelectrochem., 71, 38, 2007
  36. Kenausis G, Taylor C, Katakis I, Heller A, J. Chem. Soc.-Faraday Trans., 92, 4131, 1996
  37. Jeon WY, Choi YB, Kim HH, Sensors, 15, 31083, 2015
  38. Aziz MA, Jo K, Lee JA, Akanda MRH, Sung D, Jon S, Yang Y, Electroanal., 22, 2615, 2010
  39. Attal S, Thiruvengadathan R, Regev O, Anal. Chem., 78, 8098, 2006
  40. Wen H, Nallathambi V, Chakraborty D, Barton SC, Microchim Acta., 175, 283, 2011
  41. Paredes JI, Burghard M, Langmuir, 20(12), 5149, 2004
  42. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A, Phys. Rep., 409, 47, 2005
  43. Lin J, He C, Zhao Y, Zhang S, Actuators B, 137, 768, 2009
  44. Dhand C, Arya SK, Singh SP, Singh BP, Datta M, Malhotra BD, Carbon, 46, 1727, 2008
  45. Sone K, Yagi M, Electroanalysis, 21, 144, 2009
  46. Cao H, Zhu Y, Tang L, Yang X, Li C, Electroanalysis, 20, 2223, 2008
  47. Ganesh V, Maheswari DL, Berchmans S, Electrochim. Acta, 56(3), 1197, 2011
  48. Zhao HZ, Sun JJ, Song J, Yang QZ, Carbon, 48, 1508, 2010
  49. Wepasnick KA, Smith BA, Bitter JL, Fairbrother DH, Anal. Bioanal. Chem., 396, 1003, 2010
  50. Shi Q, Yang D, Su Y, Li J, Jiang Z, Jiang Y, Yuan W, J. Nanopart. Res., 9, 1205, 2007
  51. Ivnitski D, artyushkova K, Rincon RA, Atanassov P, Luckarift HR, Johnson GR, Small, 4, 357, 2008
  52. Verma ML, Naebe M, Barrow CJ, Puri M, Plos One, 8, e73642, 2013
  53. Hernandez-Cancel G, Suazo-Davila D, Ojeda-Cruzado AJ, Garcia-Torres D, Cabrera CR, Griebenow K, J. Nanotechnol., 13, 70, 2015
  54. Joseph Y, Besnard I, Rosenberger M, Guse B, Nothofer HG, Wessels JM, Wild U, Knop-Gericke A, Su DS, Schlogl R, Yasuda A, Vossmeyer T, J. Phys. Chem. B, 107(30), 7406, 2003
  55. Fayazfar H, Afshar A, Dolati M, Dolati A, Anal. Chim. Acta, 836, 34, 2014
  56. Li X, Zhao X, Wang MS, Zhang KJ, Huang Y, Qu MZ, Yu ZL, Geng DS, Zhao WG, Zheng JM, RSC Adv., 7, 24359, 2017
  57. Ezhilvilian AT, Veeramani V, Chen SM, Madhu R, Kwak CH, Huh YS, Han YK, Sci. Rep., 5, 18390, 2015
  58. Chen X, Yan X, Khor KA, Tay BK, Biosens. Bioelectron., 22, 3256, 2007
  59. Zhao H, Ju H, Anal. Biochem., 350, 138, 2006
  60. Nakamura S, Hayashi S, Koga K, Biochim. Biophys. Acta., 445, 294, 1976
  61. Mutlu S, Mutlu M, Piskin E, Biochem. Eng. J., 1, 39, 1998
  62. Wu CS, Wu CT, Yang YS, Ko FH, Chem. Commun., 5327 (2008).
  63. Deka J, Pau A, Chattopadhyay A, RSC Adv., 2, 4736, 2012
  64. Papa H, Gaillard M, Gonzalez L, Chatterjee J, Biosensors, 4, 449, 2014
  65. Thibault S, Aubriet H, Arnoult C, Microchim. Acta, 163, 211, 2008
  66. Sakr OS, Borchard G, Biomolecules, 14, 2117, 2013
  67. de la Escosura-Muniz A, Parolo C, Marian F, Mekoci A, Nanoscale, 3, 3350, 2011
  68. Zhang H, Lu HY, Hu NF, J. Phys. Chem. B, 110(5), 2171, 2006
  69. Tasca F, Farias D, Castro C, Acuna-Rougier C, Antiochia R, Plos One, 10, e01321, 2015
  70. Kannan P, Chen H, Lee VT, Kim DH, Talanta, 86, 400, 2011
  71. Wu Y, Feng X, Zhou S, Shi H, Wu H, Zhao S, Song W, Microchim. Acta, 180, 1325, 2013