Issue
Korean Journal of Chemical Engineering,
Vol.36, No.7, 1140-1147, 2019
Mechanism of the simultaneous removal of nitrate and Ni(II) by Enterobacter sp. CC76 through mixotrophic denitrification processes
We studied the mechanism for the simultaneous removal of nitrate and Ni(II) by Enterobacter sp. CC76. Response surface methodology results showed that the maximum removal ratios of nitrate and Ni(II) were 95.02% and 75.99% under the following conditions: pH 7.37, 54.31mgㆍL-1 Fe(II), and 10.00mgㆍL-1 Ni(II). The mechanism of Ni(II) removal involved Fe-oxide adsorption and the increase of pH. In addition, meteorological chromatography analysis indicated that Ni(II) affected gas composition during denitrification. Scanning electron microscopy and X-ray photoelectron spectroscopy confirmed that Fe-oxide adsorption was the main contributor to Ni(II) removal. This study shows that Enterobacter sp. CC76 can enhance the adsorption of Ni(II) onto Fe-oxides while removing nitrate.
[References]
  1. Ahmad HB, Abbas Y, Hussain M, Akhtar N, Ansari TM, Zuber M, Zia KM, Arain SA, Korean J. Chem. Eng., 31(2), 284, 2014
  2. Huang G, Fallowfield H, Guan H, Liu F, Water Air Soil Pollut., 223, 4029, 2012
  3. Huang TL, Guo L, Zhang HH, Su JF, Wen G, Zhang K, Bioresour. Technol., 196, 209, 2015
  4. Song ZF, An J, Fu GF, Yang XL, Aquaculture, 319, 188, 2011
  5. Zhou Z, Huang T, Yuan B, Liao X, J. Soil Contamination, 25, 89, 2016
  6. Xia S, Zhong F, Zhang Y, Li H, Yang X, J. Environ. Sci., 22, 257, 2019
  7. Di Capua F, Pirozzi F, Lens PNL, Esposito G, Chem. Eng. J., 362, 922, 2019
  8. Bertini I, Sigel A, Sigel H, J. Org. Chem., 659, 203, 2001
  9. Schmidt M, Goebeler M, J. Mol. Medicine, 89, 961, 2011
  10. Denkhaus E, Salnikow K, Crit. Rev. Oncol. Hematol., 42, 35, 2002
  11. Zambelli B, Uversky VN, Ciurli S, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1864, 1714 (2016).
  12. Zambelli B, Ciurli S, Metal Ions in Life Sci., 13, 321, 2013
  13. Coman V, Robotin B, Ilea P, Resour. Conserv. Recycl., 73, 229, 2013
  14. Hoseinian FS, Rezai B, Kowsari E, Safari M, Miner. Eng., 119, 212, 2018
  15. Fu F, Wang Q, J. Environ. Manage., 92, 407, 2011
  16. Raval NP, Shah PU, Shah NK, J. Environ. Manage., 179, 1, 2016
  17. He TX, Xie DT, Ni JP, Li ZL, J. Hazard. Mater., 368, 594, 2019
  18. Zou G, Ylinen A, Capua FD, Papirio S, Lakaniemi AM, Puhakka J, Adv. Mater. Res., 825, 500, 2013
  19. Di Capua F, Milone I, Lakaniemi AM, van Hullebusch ED, Lens PNL, Esposito G, Bioresour. Technol., 238, 534, 2017
  20. Idhayachander R, Palanivelu K, J. Chem., 7, 1412, 2012
  21. Pandey P, Choubey S, Verma Y, Pandey M, Kamal S, Chandrashekhar K, Int. J. Environ. Res. Public Health, 4, 332, 2007
  22. Moosavirad SM, Sarikhani R, Shahsavani E, Mohammadi SZ, J. Water Chem. Technol., 37, 191, 2015
  23. Al-Gheethi AAS, Norli I, Lalung J, Azlan AM, Farehah ZAN, Kadir MOA, Clean Technologies Environ. Policy, 16, 137, 2014
  24. Quintelas C, Rocha Z, Silva B, Fonseca B, Figueiredo H, Tavares T, Chem. Eng. J., 152(1), 110, 2009
  25. Su JF, Cheng C, Huang TI, Ma F, Lu JS, Shao SC, J. Taiwan Institute Chem. Engineers, 66, 106, 2016
  26. Su JF, Guo DX, Huang TI, Lu JS, Bai XC, Hu XF, Environ. Eng. Sci., 35, 1228, 2018
  27. Qambrani NA, Jung SH, Yong SO, Yong SK, Oh SE, Environ. Sci. Pollut Res. Int., 20, 9084, 2013
  28. Komarek M, Antelo J, Kralova M, Veselska V, Cihalova S, et al., Chem. Geol., 493, 189, 2018
  29. Abigail M, Samuel MS, Chidambaram R, J. Taiwan Inst. Chem. Engineers, 49, 156, 2015
  30. Small TD, Warren LA, Ferris FG, Appl. Geochem., 16, 939, 2001
  31. Lee JH, Hur HG, J. Korean Soc. Appl. Biol. Chem., 57, 123, 2014
  32. Lee SW, J. Mater. Cycles Waste Manage., 15, 362, 2013
  33. Daughney CJ, Fakih M, Chatellier X, Geomicrobiol. J., 28, 11, 2011
  34. Hohmann C, Winkler E, Morin G, Kappler A, Environ. Sci. Technol., 44, 94, 2010
  35. Coup KM, Swedlund PJ, Chem. Geol., 398, 97, 2015
  36. Kiskira K, Papirio S, van Hullebusch ED, Esposito G, Environ. Sci. Pollut. Res., 24, 21323, 2017
  37. Barrow NJ, Gerth J, Brummer GW, Eur. J. Soil Sci., 40, 437, 2010
  38. Kim EJ, Lee CS, Chang YY, Chang YS, Appl. Mater. Interfaces, 5, 9628, 2013
  39. Qin QD, Wang QQ, Fu DF, Ma J, Chem. Eng. J., 172(1), 68, 2011
  40. Lei L, Zhang G, Lin J, Wang X, Wang S, Jia Y, Appl. Geochem., 98, 418, 2018
  41. Yusof AM, Malek NANN, J. Hazard. Mater., 162(2-3), 1019, 2009
  42. Yang KL, Zhou JS, Lou ZM, Zhou XR, Liu YL, Li YZ, Baig SA, Xu XH, Chem. Eng. J., 354, 577, 2018
  43. Li HS, Chen YH, Long JY, Li XW, Jiang DQ, Zhang P, Qi JY, Huang XX, Liu J, Xu RB, Gong J, J. Hazard. Mater., 338, 296, 2017
  44. Su J, Gao C, Huang T, Gao Y, Bai X, He L, Chemosphere, 222, 970, 2019
  45. Nesbitt HW, Legrand D, Bancroft GM, Phys. Chem. Miner., 27, 357, 2000
  46. Tamilselvan A, Balakumar S, Sakar M, Nayek C, Murugavel P, Saravana KK, Dalton Trans., 43, 5731, 2014