Issue
Korean Journal of Chemical Engineering,
Vol.36, No.7, 1124-1130, 2019
Effects of air gap on membrane substrate properties and membrane performance for biomass processing
We studied a correlation between the membrane substrate properties and the final performance of hollow fiber thin film composite (TFC) membrane for xylose/glucose concentration and acetic acid removal. Polysulfone (PSf) hollow fiber membrane substrate was fabricated using 20 wt% PSf, 2 wt% polyvinylpyrrolidone and 78 wt% dimethylformamide via dry-wet spinning process. The air gap distance was manipulated from 6 cm to 15 cm during spinning to produce different substrate membrane properties. The molecular weight cut-off (MWCO) and porosity of the membrane substrate increased as the air gap distance increased. Membrane substrate that was spun at 6 cm air gap showed a rapid phase inversion without much chain relaxation, thus producing the smallest MWCO (8 kDa) and an average pore diameter (4.46 nm). The TFC membrane produced using this membrane substrate showed the best performance in terms of solute rejection and separation factor. The rejection for xylose, glucose and acetic acid was 91.66±0.09%, 67.28±13.97%, and 13.08±3.00%, respectively. This results in an ideal separation factor of 3.20±1.27 for acetic acid/glucose and 10.42±0.25 for acetic acid/xylose.
[References]
  1. Nguyen N, Fargues C, Guiga W, Lameloise ML, J. Membr. Sci., 487, 40, 2015
  2. Zhou FL, Wang CW, Wei J, J. Membr. Sci., 429, 243, 2013
  3. Fang WX, Shi L, Wang R, J. Membr. Sci., 468, 52, 2014
  4. Wu DH, Huang YF, Yu SC, Lawless D, Feng XS, J. Membr. Sci., 472, 141, 2014
  5. Misdan N, Lau WJ, Ismail AF, Matsuura T, Desalination, 329, 9, 2013
  6. Zhu S, Zhao S, Wang Z, Tian XX, Shi MQ, Wang JX, Wang SC, J. Membr. Sci., 493, 263, 2015
  7. Korminouri F, Rahbari-Sisakht M, Rana D, Matsuura T, Ismail AF, Sep. Purif. Technol., 132, 601, 2014
  8. Radjabian M, Koll J, Buhr K, Handge UA, Abetz V, Polym., 54, 1803, 2013
  9. Tang YD, Li N, Liu AJ, Ding SK, Yi CH, Liu H, Desalination, 287, 326, 2012
  10. Liu T, Zhang D, Xu S, Sourirajan S, Sep. Sci. Technol., 27, 161, 1992
  11. Khayet M, Chem. Eng. Sci., 58(14), 3091, 2003
  12. Said N, Hasbullah H, Ismail AF, Nidzhom M, Abidin Z, Sean P, Dzarfan MH, Chem. Eng. Trans., 56, 1591, 2017
  13. Chung TS, Xu ZL, Lin WH, J. Appl. Polym. Sci., 72(3), 379, 1999
  14. Maurya SK, Parashuram K, Singh PS, Ray P, Reddy AVR, Desalination, 304, 11, 2012
  15. Li DF, Wang R, Chung TS, Sep. Purif. Technol., 40(1), 15, 2004
  16. Miller GL, Anal. Chem., 31, 426, 1959
  17. Anuar E, Saufi SM, Seman MNA, Yussof HW, Ismail AF, Chem. Eng. Trans., 56, 1099, 2017
  18. Yusoff II, Rohani R, Mohammad AW, Malaysian J. Anal. Sci., 21, 484, 2017
  19. Cheng ZL, Li X, Liu YD, Chung TS, J. Membr. Sci., 506, 119, 2016
  20. ElSherbiny IMA, Ghannam R, Khalil ASG, Ulbricht M, J. Membr. Sci., 493, 782, 2015
  21. Fathizadeh M, Aroujalian A, Raisi A, Desalination, 284, 32, 2012
  22. Van der Bruggen B, Vandecasteele C, Van Gestel T, Doyen W, Leysen R, Environ. Prog., 22, 47, 2003
  23. Grzenia DL, Schell DJ, Wickramasinghe SR, J. Membr. Sci., 322(1), 189, 2008
  24. Guo GL, Chen WH, Chen WH, Men LC, Hwang WS, Bioresour. Technol., 99(14), 6046, 2008
  25. Ang M, Lau V, Ji YL, Huang SH, An Q, Caparanga A, Tsai HA, Hung W, Hu CC, Lee KR, Lai JY, Polymers, 9, 505, 2017
  26. Li J, Wei M, Wang Y, Chinese J. Chem. Eng., 25, 1676, 2017
  27. Weng YH, Wei HJ, Tsai TY, Chen WH, Wei TY, Hwang WS, Wang CP, Huang CP, Sep. Purif. Technol., 67(1), 95, 2009
  28. Maiti SK, Thuyavan YL, Singh S, Oberoi HS, Agarwal GP, Bioresour. Technol., 114, 419, 2012
  29. Weng YH, Wei HJ, Tsai TY, Lin TH, Wei TY, Guo GL, Huang CP, Bioresour. Technol., 101(13), 4889, 2010
  30. Zhou FL, Wang CW, Wei J, Bioresour. Technol., 131, 349, 2013