Issue
Korean Journal of Chemical Engineering,
Vol.36, No.7, 1115-1123, 2019
Thermodynamic and kinetic studies sorption of 5-fluorouracil onto single walled carbon nanotubes modified by chitosan
Single-walled carbon nanotubes (SWCNTs) were functionalized by chitosan and their application was examined in adsorbing an anti-cancer drug, 5-fluorouracil (5Fu). Surface, physical and morphological characteristics of raw SWCNTs and Chitosan-functionalized SWCNTs (Ch-SWCNTs) were extensively characterized by Fourier transform spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA), Brunauer-Emmet-Teller (BET) and X-ray diffraction (XRD). The effects of various variables such as pH, initial drug concentration, temperature, and contact time on adsorption capacity were also investigated. Thermodynamic parameters such as ΔSo, ΔHo, and ΔGo were estimated. Isotherm and kinetic studies of drug adsorption indicated that the adsorption process followed Langmuir isotherm model and pseudo-second-order kinetic, respectively. The maximum adsorption capacity (qm) of 5Fu on Ch-SWCNTs was 31.77mg g-1 at 298 K, pH 4.0, and 120 min, which is higher than adsorption capacity of SWCNTs (4.12mg g-1) in the same conditions. The adsorption was spontaneous and exothermic process in nature, with a slight decreasing in entropy.
[References]
  1. Nooreini MG, Panahi HA, Int. J. Pharm., 512, 178, 2016
  2. Heydarinasab A, Panahi HA, Nematzadeh H, Moniri E, Nasrollahi S, Monastsh. Chem., 146, 411, 2015
  3. Panahi HA, Nasrollahi S, Int. J. Pharm., 476, 70, 2014
  4. Panahi HA, Tavanaei Y, Moniri E, Keshmirizadeh E, J. Chromatogr. A, 1345, 37, 2014
  5. Panahi HA, Alaei H, Int. J. Pharm., 476, 178, 2014
  6. Hu Y, Fine DH, Tasciotti E, Bouamrani A, Ferrari M, Nanomed. Nanobiotechnol., 3, 11, 2011
  7. Menard-Moyon C, Venturelli E, Fabbro C, Samori C. Da Ros T, Kostarelos K, Prato M, Bianco A, Expert Opin. Drug Discovery, 5, 691, 2010
  8. Baughman RH, Zakhidov AA, de Heer WA, Science, 297, 787, 2002
  9. Bianco A, Kostarelos K, Prato M, Curr. Opin. Chem. Biol., 9, 674, 2005
  10. Liu P, Ind. Eng. Chem. Res., 52, 13517, 2013
  11. Lim DJ, Sim M, Oh L, Lim K, Park H, Arch. Pharm. Res., 37, 43, 2014
  12. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai H, Mater. Trans., 14, 316, 2011
  13. Khazaei A, Rad MNS, Borazjani MK, Int. J. Nanomed., 5, 639, 2010
  14. Liu Z, Chen K, Davis C, Sherlock S, Cao QZ, Chen XY, Dai HJ, Cancer Res., 68, 6652, 2008
  15. Liu Z, Fan AC, Rakhra K, Sherlock S, Goodwin A, Chen XY, Yang QW, Felsher DW, Dai HJ, Angew. Chem.-Int. Edit., 48, 7668, 2009
  16. Moazen MK, Panahi HA, J. Sep. Sci., 40(5), 1125, 2017
  17. Fan W, Yan W, Xu Z, Ni H, Colloids Surf. B: Biointerfaces, 95, 258, 2012
  18. dos Santos KSCR, Coelho JFJ, Ferreira P, Pinto I, Lorenzetti SG, Ferreira EI, Higa OZ, Gil MH, Int. J. Pharm., 310, 37, 2006
  19. Dadvar E, Kalantary RR, Panahi HA, Peyravi M, J. Chem., 2017, 1, 2017
  20. Zhang XK, Meng LJ, Lu QH, Fei ZF, Dyson PJ, Biomaterials, 30, 6041, 2009
  21. Li J, Sun H, Dai YD, Chin. Phys. Lett., 27, 38104, 2010
  22. Zhan Y, Pan L, Nie C, Li, Li H, Sun Z, J. Alloy. Compd., 509, 5667, 2011
  23. Amin NK, J. Hazard. Mater., 165(1-3), 52, 2009
  24. Ho YS, McKay G, Process Biochem., 34(5), 451, 1999
  25. Langmuir I, J. Am. Chem. Soc., 40, 1361, 1918
  26. Hall KR, Eagleton LC, Acrivos A, Vermeulen T, Ind. Eng. Chem. Fundam., 5, 212, 1966
  27. Namasivayam C, Jeyakumar R, Yamuna RT, Waste Manage., 14, 643, 1994
  28. Naiya TK, Bhattacharya AK, Das SK, J. Colloid Interface Sci., 333(1), 14, 2009
  29. Konicki W, Pelech I, Mijowska E, Jasinska I, Chem. Eng. J., 210, 87, 2012