Issue
Korean Journal of Chemical Engineering,
Vol.36, No.7, 1090-1101, 2019
Kinetic effect and absorption performance of piperazine activator into aqueous solutions of 2-amino-2-methyl-1-propanol through post-combustion CO2 capture
The current study investigates the absorption kinetics of carbon dioxide (CO2) released from power plant exhaust using activated mixture of 2-amino-2-methyl-1-propanol (AMP) upgraded by piperazine (PZ). An absorption experiment of (AMP+PZ+H2O) was conducted in a wetted wall column absorber with a temperature variation of 298- 313 K and CO2 partial pressure of 5-15 kPa. PZ is considered to be a rate promoter by adjustable mass proportion varying from 2 to 10 wt%, while the concentration of entire amine solution remained constant at 30 wt%. Based on the Zwitterions mechanism, an overall reaction pattern of (AMP+PZ+H2O) with CO2 was designed. Considering pseudofirst order reaction criteria, the kinetic rate factors and the overall second order rate constants were calculated. The overall rate constant (kOV) experienced a significant enhancement with a small addition of PZ into aqueous AMP solution. The observed second-order rate constants (k2, PZ) in this experimental study were 60,403, 81,925, 98,591 and 116,521m3ㆍkmol- 1ㆍs- 1 at 298, 303, 308 and 313 K correspondingly. The experimental specific rate of absorption into (AMP+PZ+H2O) in connection with the model anticipated rate was determined with deviation of around 4.86% average absolute deviation (AAD).
[References]
  1. Scripps Institution of Oceanography, University of California, San Diego. http://scripps.uscd.edu/programs/keeling curve (2018).
  2. Intergovernmental Panel on Climate Change (IPCC), 2001c.
  3. IEA, World Energy Outlook Special Report on Energy and Climate Change. International Energy Agency (IEA), 115 (2015).
  4. Rao A, Rubin B, Edward S, Environ. Sci. Technol., 36, 4467, 2002
  5. Rochelle GT, Science, 325, 1652, 2009
  6. Rangwala HA, Morrell BR, Mather AE, Otto FD, Can. J. Chem. Eng., 70, 482, 1992
  7. Kohl A, Nielsen R, Gas Purification. 5th Ed., Gulf Publishing Co., Houston (1997).
  8. Rinker EB, Ashour SS, Sandall OC, Ind. Eng. Chem. Res., 39(11), 4346, 2000
  9. deMontigny D, Tontiwachwuthikul P, Chakma A, Ind. Eng. Chem. Res., 44(15), 5726, 2005
  10. Osman K, Coquelet C, Ramjugernath D, J. Chem. Eng. Data, 57(5), 1607, 2012
  11. Pacheco MA, Kaganoi S, Rochelle GT, Chem. Eng. Sci., 55(21), 5125, 2000
  12. Zoghi AT, Feyzi F, Zarrinpashneh S, Int. J. Greenhouse. Gas Control, 7, 12, 2012
  13. Rowland R, Yang Q, Jackson P, Attalla M, Energy Procedia, 4, 195, 2011
  14. Lu JG, Cheng M, Ji Y, Hui Z, J. Fuel Chem. Technol., 37, 740, 2009
  15. Huser N, Schmitz O, Kenig EY, Chem. Eng. Sci., 157, 221, 2017
  16. Mumford KA, Wu Y, Smith KH, Stevens GW, Front. Chem. Sci. Eng., 9, 125, 2015
  17. Liu YC, Fan WD, Wang K, Wang JC, J. Clean Prod., 112, 4012, 2016
  18. El Hadri N, Quang DV, Goetheer ELV, Abu Zahra MRM, Appl. Energy, 185, 1433, 2017
  19. Bishnoi S, Rochelle GT, AIChE J., 48(12), 2788, 2002
  20. Sun WC, Yong CB, Li MH, Chem. Eng. Sci., 60(2), 503, 2005
  21. Samanta A, Bandyopadhyay SS, Chem. Eng. Sci., 64(6), 1185, 2009
  22. Sartori G, Savage DW, Ind. Eng. Chem. Fundam., 22, 239, 1983
  23. Gordesli FP, Ume CS, Alper E, Int. J. Chem. Kinet., 45, 566, 2013
  24. Ume CS, Ozturk MC, Alper E, Chem. Eng. Technol., 35(3), 464, 2012
  25. Appl M, Wagner U, Henrici HJ, Kuessner K, Volkamer F, Ernst-Neust N, Removal of CO2 and/or H2 S and/or COS from gases containing these constituents, US Patent 4,336,233 (1982).
  26. Dash SK, Samanta A, Samanta AN, Bandyopadhyay SS, Chem. Eng. Sci., 66(14), 3223, 2011
  27. Khan AA, Halder GN, Saha AK, Int. J. Greenhouse. Gas Control, 44, 217, 2016
  28. Bishnoi S, Rochelle GT, Chem. Eng. Sci., 55(22), 5531, 2000
  29. Derks PWJ, Kleingeld T, van Aken C, Hogendoom JA, Versteeg GF, Chem. Eng. Sci., 61(20), 6837, 2006
  30. Samanta A, Bandyopadhyay SS, Chem. Eng. Sci., 62(24), 7312, 2007
  31. Caplow M, J. Am. Chem. Soc., 90, 6795, 1968
  32. Danckwerts PV, Chem. Eng. Sci., 34, 443, 1979
  33. Pinsent BRW, Pearson L, Roughton FWJ, Trans. Faraday Soc., 52, 1512, 1956
  34. Kierzkowska-Pawlak H, Siemieniec M, Chacuk A, Chem. Process., 33, 7, 2012
  35. Liao CH, Li MH, Chem. Eng. Sci., 57(21), 4569, 2002
  36. Yih SM, Shen KP, Ind. Eng. Chem. Res., 27, 2237, 1988
  37. Saha AK, Bandyopadhyay SS, Biswas AK, Chem. Eng. Sci., 50(22), 3587, 1995
  38. Geankoplis CJ, Transport Processes and Separation Process Principles, 4th Ed., Prentice-Hall, Englewood Cliffs, NJ (2003).
  39. Clarke JKA, Ind. Eng. Chem. Fundam., 3, 239, 1964
  40. Haimour N, Sandall OC, Chem. Eng. Sci., 39, 1791, 1984
  41. AI-Ghawas HA, Hagewiesche DP, Ruiz-Ibanez G, Sandall OC, J. Chem. Eng. Data, 34, 385, 1989
  42. Xu S, Otto FD, Mather AE, J. Chem. Eng. Data, 36, 71, 1991
  43. Haimour NM, J. Chem. Eng. Data, 35, 177, 1990
  44. Saha AK, Bandyopadhyay SS, Biswas AK, J. Chem. Eng. Data, 38, 82, 1993
  45. Laddha SS, Diaz JM, Danckwerts PV, Chem. Eng. Sci., 36, 228, 1981
  46. Versteeg GF, van Swaaij WPM, J. Chem. Eng. Data, 33, 29, 1988
  47. Doraiswamy LK, Sharma MM, Fluid-Fluid-Solid Reactions, Vol. 2, Wiley, New York (1984).
  48. Xu GW, Zhang CF, Qin SJ, Wang YW, Ind. Eng. Chem. Res., 31, 921, 1992
  49. Seo DJ, Hong WH, Ind. Eng. Chem. Res., 39(6), 2062, 2000
  50. Zhang X, Zhang CF, Qin SJ, Zheng ZS, Ind. Eng. Chem. Res., 40(17), 3785, 2001