Issue
Korean Journal of Chemical Engineering,
Vol.36, No.7, 1082-1089, 2019
Mechanisms of dry flue-gas desulfurization using natural manganese oxide ores
The mechanisms of flue-gas desulfurization using high and low-grade natural manganese oxide ores were comparatively studied. Both manganese oxide ores exhibit good desulfurization capabilities with SO2 content in the effluents less than 30 ppm, but the low-grade ores show the much better desulfurization capability. XRD and SEM/EDS results reveal that the MnO2 absorbs the SO2 to convert to MnSO4. The SO2 give prior to react with the surface MnO2 and the produced MnSO2 enriched on the surface leads to the gradually decrease of the SO2 removal rate during desulfurization process. The better desulfurization capability of the low-grade ores is ascribed to the more dispersive MnO2 due to the poriferous/lax internal tunnel structure, and the embedded inert SiO2 shows better support effects to avoid pore structure blocking, which is favorable for enhancing the diffusion of the SO2 and desulfurization reaction process. This study is of significance in the comprehensive utilization of the low-grade natural manganese oxide ores, environmental protection and even the preparation of the desulfurization catalyst with MnO2.
[References]
  1. Paper IR, Korean J. Chem. Eng., 28, 2218, 2011
  2. Zhang W, Li X, Wang H, Song YJ, Zhang S, Li C, Korean J. Chem. Eng., 34(12), 3132, 2017
  3. Hrdlicka J, Dlouhy T, J. Energy Inst. (2018).
  4. Srivastava RK, Jozewicz W, J. Air Waste Manag. Assoc., 51, 1676, 2001
  5. Liu XC, Chen LT, Qi GX, Chem. Eng. Technol., 41(8), 1675, 2018
  6. Pahlman JE, Carlton SC, Huff RV, Hammel CF, Boren RM, Kronbeck KP, US Patent, 6, 974, 565 B2 (2003).
  7. Bao J, Yang L, Sun W, Geng J, Yan J, Shen X, Chem. Eng. Process. Process Intensif., 50, 828, 2011
  8. Oikawa K, Yongsirib C, Takeda K, Harimotoa T, Environ. Prog., 22, 67, 2003
  9. Jia Y, Du D, Zhang X, Ding X, Zhong O, Korean J. Chem. Eng., 30(9), 1735, 2013
  10. Zhao Y, Shuang-Chen MA, Wang XM, Qiong Z, . Environ. Sci., 15, 123, 2003
  11. Liu X, Osaka Y, Huang H, Li J, Yang X, Li S, RSC Adv., 6
  12. Mo J, Wu Z, Cheng C, Guan B, Zhao W, J. Environ. Sci., 19, 226, 2007
  13. Yao S, Cheng S, Li J, Zhang H, Jia J, Sun X, J. Environ. Sci., 77, 32, 2019
  14. Kouravand S, Kermani AM, J. Clean Prod., 201, 229, 2018
  15. Oh EK, Jung GH, Kim SG, Lee HK, Kim IW, Korean J. Chem. Eng., 16(3), 292, 1999
  16. Li T, Zhuo Y, Lei J, Xu X, Korean J. Chem. Eng., 24(6), 1113, 2007
  17. Ye WQ, Li YJ, Kong L, Ren MM, Han Q, Trans. Nonferrous Met. Soc. China, 23, 3089, 2013
  18. Zhang J, You C, Qi H, Chen C, Xu X, Environ. Sci. Technol., 40, 4010, 2006
  19. Pi ZP, Shen BX, Zhao JG, Liu JC, Ind. Eng. Chem. Res., 54(43), 10622, 2015
  20. Fan L, Chen J, Guo J, Jiang X, Jiang W, J. Anal. Appl. Pyrolysis, 104, 353, 2013
  21. del Valle-Zermeno R, de Montiano-Redondo J, Formosa J, Chimenos JM, Renedo MJ, Fernandez J, Energy Fuels, 29(6), 3845, 2015
  22. Chen T, Dou H, Li X, Tang X, Li J, Hao J, Microporous Mesoporous Mater., 122, 270, 2009
  23. Liu X, Osaka Y, Huang H, Li J, He Z, Yang X, Huhetaoli H, Li S, Kobayashi N, RSC Adv., 7, 18500, 2017
  24. Bello-Teodoro S, Perez-Garibay R, Bouchard J, Ind. Eng. Chem. Res., 53(19), 7965, 2014
  25. Osaka Y, Kito T, Kobayashi N, Kurahara S, Huang HY, Yuan HR, He ZH, Sep. Purif. Technol., 150, 80, 2015
  26. Bakker WJW, Kapteijn F, Moulijn JA, Chem. Eng. J., 96(1-3), 223, 2003
  27. Wu MM, Li T, Li HY, Fan HL, Mi J, Energy Fuels, 31(12), 13921, 2017
  28. Rouquerol J, Rouquerol F, Llewellyn P, Maurin G, Sing KS, Acad. Press (2013).
  29. Yang L, Jiang X, Yang ZS, Jiang WJ, Ind. Eng. Chem. Res., 54(5), 1689, 2015
  30. Nayakasinghe MT, Sivapragasam N, Burghaus U, J. Phys. Chem. C, 122, 8244, 2018
  31. Yan XM, Mei P, Lei JH, Mi YZ, Xiong L, Guo LP, J. Mol. Catal. A-Chem., 304(1-2), 52, 2009
  32. Zhou H, Li G, Wang X, Jin C, Chen Y, J. Nat. Gas Chem., 18, 365, 2009
  33. Ye Z, Wang W, Zhong Q, Bjerle I, Fuel, 74, 743, 1995