Issue
Korean Journal of Chemical Engineering,
Vol.36, No.7, 1069-1081, 2019
A comparative study on dynamic Hg(II) and MeHg(II) removal by functionalized agrowaste adsorbent: breakthrough analysis and adsorber design
The adsorption dynamics of inorganic mercury, Hg(II) and organic methylmercury, MeHg(II) removal by low-cost reactive agrowaste adsorbents namely CP-Pure, CP-MPTES and CP-RR was investigated in a fixed-bed adsorber. The results show that the breakthrough and saturation times were delayed with decreasing flow rate (F) and initial concentration (Co), and increasing bed height (Z). The Hg(II) possessed better adsorption performance than MeHg(II). The isotherm and kinetic model analyses of adsorption data followed the Temkin isotherm and the pseudosecond order kinetic models, respectively. The breakthrough curve was simulated well by the Thomas and Yoon-Nelson models, and then was further used for scale-up studies. The empty bed contact time (EBCT) concept was successfully demonstrated for the adsorber design and scale-up studies. The regeneration studies showed that the regenerated CP-Pure and CP-MPTES have a high regeneration efficiency up to third adsorption cycle.
[References]
  1. Cisneros BJ, Rose JB, Urban Water Security: Managing Risks, 2009, London, CRC Press.
  2. Marimon-Bolivar W, Tejeda-Benitez L, Herrera AP, Environ. Nanotech. Monitor. Manag., 10, 486, 2018
  3. Balderas-Hernandez P, Roa-Morales G, Ramirez-Silva MT, Romero-Romo M, Rodriguez-Sevilla E, Esparza-Schulz JM, Juarez-Gomez J, Chemosphere, 167, 314, 2017
  4. Saman N, Johari K, Song ST, Kong H, Cheu SC, Mat H, Chemosphere, 171, 19, 2017
  5. Saman N, Johari K, Song ST, Mat H, Environ. Earth Sci., 75, 345, 2016
  6. Johari K, Saman N, Song ST, Cheu SC, Kong H, Mat H, Chemosphere, 156, 56, 2016
  7. Song ST, Hau YF, Saman N, Johari K, Cheu SC, Kong H, Mat H, J. Environ. Chem. Eng., 4, 1685, 2016
  8. Saman N, Johari K, Song ST, Kong H, Cheu SC, Mat H, Environ. Prog. Sustain. Energy, 38, S54, 2019
  9. Saman N, Johari K, Song ST, Kong H, Cheu SC, Mat H, J. Environ. Chem. Eng., 4, 2487, 2016
  10. Teimouri A, Esmaeili H, Foroutan R, Ramavandi B, Korean J. Chem. Eng., 35(2), 479, 2018
  11. Zarei S, Niad M, J. Taiwan. Inst. Chem. Eng., 81, 247, 2017
  12. Hadavifar M, Bahramifar N, Younesi H, Rastakhiz M, Li Q, Yu J, Eftekhari E, J. Taiwan. Inst. Chem. Eng., 67, 397, 2016
  13. Park JH, Wang JJ, Zhou B, Mikhael JER, DeLaune RD, Environ. Poll., 244, 627, 2019
  14. Zhou Q, Duan Y, Zhu C, Zhang J, She M, Wei H, Hong Y, Korean J. Chem. Eng., 32(7), 1405, 2015
  15. Kushwaha S, Sudhakar PP, Carbohydr. Polym., 86, 1055, 2011
  16. Akintola OS, Saleh TA, Khaled MM, Al Hamouz OCS, J. Taiwan. Inst. Chem. Eng., 60, 602, 2016
  17. Lopez-Munoz MJ, Arencibia A, Cerro L, Pascual R, Melgar A, Appl. Surf. Sci., 367, 91, 2016
  18. Saman N, Johari K, Mat H, Ind. Eng. Chem. Res., 53(3), 1225, 2014
  19. Saman N, Johari K, Mat H, Microporous Mesoporous Mater., 194, 38, 2014
  20. Yılmaz S, Sahan T, Karabakan A, Korean J. Chem. Eng., 34(8), 2225, 2017
  21. Hanafiah MAKM, Zakaria H, Ngah WSW, CLEAN-Soil, Air, Water, 38, 248, 2010
  22. Goel J, Kadirvelu K, Rajagopal C, Garg VK, J. Hazard. Mater., 125(1-3), 211, 2005
  23. Hutchins RA, Chem. Eng., 80, 133, 1973
  24. Suksabye P, Thiravetyan P, Nakbanpote W, J. Hazard. Mater., 160(1), 56, 2008
  25. Han RP, Wang Y, Zhao X, Wang YF, Xie FL, Cheng JM, Tang MS, Desalination, 245(1-3), 284, 2009
  26. Rao KS, Anand S, Venkateswarlu P, J. Ind. Eng. Chem., 17(2), 174, 2011
  27. Yang Q, Zhong Y, Li X, Li X, Luo K, Wu X, Chen H, Liu Y, Zeng G, J. Ind. Eng. Chem., 28, 54, 2015
  28. Abdelmouleh M, Boufi S, Belgacem MN, Duarte AP, Ben Salah A, Gandini A, Int. J. Adhes. Adhes., 24, 43, 2004
  29. Medvidovic NV, Peric J, Trgo M, Sep. Purif. Technol., 49(3), 237, 2006
  30. Trgo M, Medvidovic NV, Peric J, Indian J. Chem. Technol., 18(2), 123, 2011
  31. Karimi M, Shojaei A, Nematollahzadeh A, Abdekhodaie MJ, Chem. Eng. J., 210, 280, 2012
  32. Xu X, Gao BY, Tan X, Zhang XX, Yue QY, Wang Y, Li Q, Chem. Eng. J., 226, 1, 2013
  33. Lim AP, Aris AZ, Biochem. Eng. J., 87, 50, 2014
  34. Song ST, Saman N, Johari K, Mat H, Environ. Prog. Sustain. Energy, 34, 1298, 2015
  35. Lopes C, Pereira E, Lin Z, Pato P, Otero M, Silva C, Rocha J, Duarte A, Microporous Mesoporous Mater., 145, 32, 2011
  36. Shaaban A, Fadel D, Mahmoud A, Elkomy M, Elbahy S, J. Environ. Chem. Eng., 1, 208, 2013
  37. Xiong CH, Li YL, Wang GT, Fang L, Zhou SG, Yao CP, Chen Q, Zheng XM, Qi DM, Fu YQ, Zhu YF, Chem. Eng. J., 259, 257, 2015
  38. Kazemi F, Younesi H, Ghoreyshi AA, Bahramifar N, Heidari A, Process Saf. Environ. Protect., 100, 22, 2016
  39. Deb AKS, Dwivedi V, Dasgupta K, Ali SM, Shenoy KT, Chem. Eng. J., 313, 899, 2017
  40. Arias FEA, Beneduci A, Chidichimo F, Furia E, Straface S, Chemosphere, 180, 11, 2017
  41. El-Bahy SM, El-Bahy ZM, J. Environ. Chem. Eng., 5, 3560, 2017
  42. Vali SA, Baghdadi M, Abdoli MA, J. Environ. Chem. Eng., 6, 6612, 2018
  43. Thomas HC, J. Am. Chem. Soc., 66, 1664, 1944
  44. Bohart GS, Adams EQ, J. Am. Chem. Soc., 42, 523, 1920
  45. Shinha AP, Parameswar D, Mass Transfer: Principle and Operations, PHI Learning Private Limited (2012).
  46. Schnelle JKB, Brown CA, Air Pollution Control Technology Handbook, CRC Press, Boca Raton, Florida (2001).